Lời giải:
a)
Nếu $m=1$ thì PT \(\Leftrightarrow 3x-1=0\Leftrightarrow x=\frac{1}{3}\)
Nếu \(m\neq 1\Rightarrow m-1\neq 0\). PT đã cho là pt bậc 2.
+) \(m> \frac{-5}{4}\) thì \(\Delta=3^2+4(m-1)=5+4m>0\). Khi đó pt có 2 nghiệm phân biệt
+) \(m=\frac{-5}{4}\) thì \(\Delta=5+4m=0\). Khi đó pt có nghiệm kép \(x_1=x_2=\frac{2}{3}\)
+) \(m< \frac{-5}{4}\) thì \(\Delta=5+4m< 0\). Khi đó pt vô nghiệm.
Vậy:
\(m=1\) thì pt có nghiệm duy nhất \(x=\frac{1}{3}\)
\(m< \frac{-5}{4}\) thì pt vô nghiệm
\(m=\frac{-5}{4}\) thì pt có nghiệm kép \(x=\frac{2}{3}\)
\(m> \frac{-5}{4}; m\neq 1\) thì pt có 2 nghiệm phân biệt
---------------
b)
Nếu \(m>7\): \(\Delta'=2^2-(m-3)=7-m< 0\), pt đã cho vô nghiệm
Nếu \(m=7\): \(\Delta'=7-m=0\), pt đã cho có nghiệm kép \(x_1=x_2=2\)
Nếu \(m< 7: \Delta'=7-m> 0\), pt đã cho có 2 nghiệm phân biệt.