Giải phương trình: \(\tan^4x+1=\frac{\left(2-\sin^2x\right)\sin3x}{\cos^4x}\)
giải pt
a, \(\sin^2x+\sin^22x+\sin^23x=\dfrac{3}{2}\)
b. \(\cos^2x+\sin^22x+\cos^23x=1\)
c,\(\sin5x+2\cos^2x=1\)
d,\(1+\tan x=2\sqrt{2}\sin\left(x+\dfrac{\pi}{4}\right)\)
e,\(\sin3x+\cos3x-\sin x+\cos x=\sqrt{2}\cos2x\)
Giải phương trình: \(\left(\frac{\cos4x+\sin2x}{\cos3x+\sin3x}\right)^2=2\sqrt{2}\sin\left(x+\frac{\pi}{4}\right)+3\)
Giai các pt sau
1. \(\sqrt{3}\cos5x-2\sin3x.\cos2x-\sin x=0\)
4. \(\sin3x+\cos3x-\sin x+\cos x=\sqrt{2}\cos2x\)
6. \(\sin x+\cos x.\sin2x+\sqrt{3}\cos3x=2\left(\cos4x+\sin x^3\right)\)
1, Giải phương trình :
a, sin2x - 2cos2x = 0
b, \(sin\left(4x+\frac{1}{2}\right)=\frac{1}{3}\)
c, \(sin^4x+cos^4x=\frac{3}{4}\)
d,\(\left(cosx-sinx\right)^2=1-cos3x\)
e,\(\left(cosx+sinx\right)^2=3sin2x\)
2. Phương trình : \(sin3x=cos^4x-sin^4x\) có tập nghiệm trùng với tập nghiệm cua phương trình nào sau đây :
A. cos2x = sin3x B. cos2x = -sin3x C. cos2x = sin2x D. cos2x = -sin2x
giải các pt
a) \(cos^2x+sin2x-1=0\)
b) \(\sqrt{3}sin2x+\:cos^4x-sin^4x=\sqrt{2}\)
c) \(\:cos^2x-sin^2x=\sqrt{2}.sin\left(x+\frac{\pi}{4}\right)\)
d) \(4\left(sin^4x+cos^4x\right)+\sqrt{3}.sin4x=2\)
e) \(4sinx.cosx.cos2x+cos4x=\sqrt{2}\)
Giải PT
a) \(\left|\sin x-\cos x\right|+\left|\sin x+\cos x\right|=2\)
b) \(\tan x-3\cot x=4\left(\sin x+\sqrt{3}\cos x\right)\)
c) \(2\sin^2x-2\sqrt{2}\sin x+3\tan^22x-2\sqrt{3}\tan2x+2=0\)
Giải phương trình: \(\left(\sin x-2\cos x\right)\cos2x+\sin x=\left(\cos4x-1\right)\cos x+\frac{\cos2x}{2\sin x}\)
sin3x=\(\frac{-\sqrt{3}}{2}\)
\(sin\left(2x-\frac{\pi}{7}\right)=\frac{\sqrt{2}}{2}\)
\(sin\left(4x+1\right)=\frac{3}{5}\)
\(sin\left(2x+\frac{\pi}{7}\right)=sin\left(x-\frac{3\pi}{7}\right)\)
\(sin\left(4x+\frac{\pi}{7}\right)=\frac{1}{4}\)
MỌI NGƯỜI GIÚP MÌNH VỚI MÌNH CẢM ƠN NHIỀU