\(\left|x+1\right|=\left|2x+3\right|\)
\(\Leftrightarrow\left(x+1\right)^2=\left(2x+3\right)^2\)
\(\Leftrightarrow x^2+2x+1=4x^2+12x+9\)
\(\Leftrightarrow x^2+2x+1-4x^2-12x-9=0\)
\(\Leftrightarrow-3x^2-10x-8=0\)
\(\Leftrightarrow-3x^2-6x-4x-8=0\)
\(\Leftrightarrow-3x\left(x+2\right)-4\left(x+2\right)=0\)
\(\Leftrightarrow-\left(x+2\right)\left(3x+4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+2=0\\3x+4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=-\dfrac{4}{3}\end{matrix}\right.\)
Vậy .............
TH 1:ta có |x+1|=x+1 và |2x+3|=2x+3 khi x≥-1
ta có p/t mới:x+1=2x+3
⇔x-2x=3-1
⇔-x=2 hay x=-2 (loại)
TH 2:ta có |x+1|=-x-1 và |2x+3|=-2x-3 khi x<-1.5
ta có p/t mới:-x-1=-2x-3
⇔-x+2x=-3+1
⇔x=-2 (thão mãn)
TH 3:ta có |x+1|=-x-1 và |2x+3|=2x+3 khi -1>x ≥-1,5
ta có p/t mới:-x-1=2x+3
⇔-x-2x=3+1
⇔-3x=4
⇔x=\(\frac{-4}{3}\) (thão mãn)
TH 4:ta có |x+1|=x+1 và |2x+3|=-2x-3 khi -1,5>x≥-1 (loại)
Vậy tập nghiệm của p/t là: S={−2;\(\frac{-4}{3}\)}