Giai các pt sau
1. \(\sqrt{3}\cos5x-2\sin3x.\cos2x-\sin x=0\)
4. \(\sin3x+\cos3x-\sin x+\cos x=\sqrt{2}\cos2x\)
6. \(\sin x+\cos x.\sin2x+\sqrt{3}\cos3x=2\left(\cos4x+\sin x^3\right)\)
Giải pt:
1. (\(\sqrt{9-x^2}\)-2x).(x\(^3\)+x\(^2\)-12x+10)=0 2. cos3x+2cos\(^2\)(x+\(\dfrac{\pi}{6}\))=1
Bài 2 Tìm tập xác định của hàm số y = \(\dfrac{\sqrt{1-sin2x}}{cos3x}\)
Bài 3 : cho pt (cosx+1)(cos-2x-mcosx)=msin\(^2\) x
tìm m để pt có đúng 2 nghiệm phân biệt thuộc \([0;\dfrac{2\pi}{3}\)\(]\)
bài 4: cho hàm số y= x\(^3\)-2mx\(^2\)+(7m-8)x-5m=10 có đồ thị (C\(_m\)) và đường thẳng d: y=x+m. tìm m để d cắt ( C\(_m\)) tai ba điểm phân biêt
giúp e với mn ơiiii
giải pt
a, \(\sin^2x+\sin^22x+\sin^23x=\dfrac{3}{2}\)
b. \(\cos^2x+\sin^22x+\cos^23x=1\)
c,\(\sin5x+2\cos^2x=1\)
d,\(1+\tan x=2\sqrt{2}\sin\left(x+\dfrac{\pi}{4}\right)\)
e,\(\sin3x+\cos3x-\sin x+\cos x=\sqrt{2}\cos2x\)
Giải pt: \(\sin3x+\cos3x-2\sqrt{2}\cos\left(x+\dfrac{\pi}{4}\right)+1=0\)
giải các pt
a) \(\sqrt{3}sin5x-cos5x+2=0\)
b) \(sinx-\sqrt{3}cosx=1\)
c) \(sin3x-cos3x=\sqrt{\frac{3}{2}}\)
d) \(2sinx.cosx+cos2x=1\)
xét tính chẵn lẻ của hàm số
a)\(y=f\left(x\right)=\sin^22x+cos3x\)
b)\(y=f\left(x\right)=cos\sqrt{x^2-16}\)
giải các pt
a) \(cos2x+cosx+1=0\)
b) \(tanx+cotx=2\)
c) \(tan^2x+\left(\sqrt{3}-1\right)tanx-\sqrt{3}=0\)
d) \(cot^22x+\frac{3}{tan2x}+2=0\)
xét tính chẵn lẻ của hàm số:
\(f\left(x\right)=\frac{1+sin^22x}{1+cos3x}\)
Tổng các nghiệm của pt \(\sqrt{3}\sin3x-\cos3x+2\sin\frac{9x}{4}=4\) trong khoảng \(\left(0;\frac{\pi}{2}\right)\) là