Giải PT:
sin4x + 2cos2x + 4.(sinx + cosx) = 1 + cos4x
(sin2x+cos2x)cosx+2cos2x-sinx=0
giải pt: \(2cos2x+sin2x=0\)
1) 2sinx + cosx = sin2x + 1
2) (1 + cosx)(1+sinx) = 2
3) 3cos4x - 8cos6x + 2cos2x +3 =0
4) sin3x + cos3x.sinx + cosx = \(\sqrt{2}\)cos2x
5) (2cosx -1)(2sinx + cosx) = sin2x - sinx
giải pt : \(\dfrac{2cos2x+1}{\sqrt{3}sinx+cosx}\)=2cosx-1
tìm txđ hàm số D: y=\(\dfrac{2+3sinx}{2sin2x+\sqrt{2}}\)
Giải pt sau :
1/ (2sinx-1)(2cos2x+2sinx+1)=3-4cos2 x
2/ \(\sqrt{3}cot\left(\frac{\pi}{4}-x\right)+1=0\)
3/ (cos\(\frac{x}{4}-3sinx\)) sinx + (\(\left(1+sin\frac{x}{4}-3cosx\right)cosx=0\)
4/ \(sin2x-cos2x+3sinx-cosx-1=0\)
giải các pt
a) \(sinx+cosx-\sqrt{2}sin2x=0\)
b) \(sin^2x+sin2x=3cos^2x\)
c) \(sinx\left(1-sinx\right)=cosx\left(cosx-1\right)\)
d) \(2\left(sin^3x-cos^3x\right)=\sqrt{3}.cos2x\left(sinx-cosx\right)\)
tìm nghiệm NN của pt
\(\frac{2cos2x}{1-sin2x}\)=0
Giải 1+2cos2x=sin2x