Ta có: \(x^3+1=0\)
\(\Leftrightarrow\left(x+1\right)\left(x^2-x+1\right)=0\)(1)
Ta có: \(x^2-x+1\)
\(=x^2-2\cdot x\cdot\frac{1}{2}+\frac{1}{4}+\frac{3}{4}\)
\(=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\)
Ta có: \(\left(x-\frac{1}{2}\right)^2\ge0\forall x\)
\(\Rightarrow\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\forall x\)
hay \(x^2-x+1\ne0\forall x\)(2)
Từ (1) và (2) suy ra x+1=0
hay x=-1
Vậy: x=-1