Cho PT: \(x^3+2ax^2-\left(a+1\right)^2x-2a.\left(a+1\right)^2=0\) ( a là hằng).
a) Giải và biện luận phương trình.
b) Với -1<a<1 nghiệm nào là nghiệm nhỏ nhất của phương trình
Cho phương trình: \(\dfrac{2x+m}{x}=1+\dfrac{x+1}{x-1}\) (m là tham số)
(+) Giải phương trình với m=1
(+) Tìm nghiệm của phương trình theo m
Cho phương trình: \(\dfrac{2x+m}{x}=1+\dfrac{x+1}{x-1}\) (m là tham số)
(+) Giải phương trình với m=1
(+) Tìm nghiệm của phương trình theo m
Cho phương trình: \(\dfrac{2x+m}{x}=1+\dfrac{x+1}{x-1}\) (m là tham số)
(+) Giải phương trình với m=1
(+) Tìm nghiệm của phương trình theo m
Câu 1: Cho a, b là bình phương của 2 số nguyên lẻ liên tiếp. Chứng minh: ab – a – b + 1 chia hết 48
Câu 2: Tìm tất cả các số nguyên x y, thỏa mãn x > y > 0: x^3 + 7y = y^3 +7x
Câu 3: Giải phương trình : (8x – 4x^2 – 1)(x^2 + 2x + 1) = 4(x^2 + x + 1)
Cho 2 phương trình: \(\dfrac{x-2013}{2011}+\dfrac{x-2011}{2009}=\dfrac{x-2009}{2007}+\dfrac{x-2007}{2005}\left(1\right)\) và \(\dfrac{x^2-\left(2-m\right)x-2m}{x-1}=0\left(2\right)\) ( Với m là tham số). Với phương trình nào của m thì 2 phương trình đã cho tương đương
Giải phương trình: \(A=\dfrac{1}{x^2-2x+2}+\dfrac{2}{x^2-2x+3}=\dfrac{6}{x^2-2x+4}\)
a) Giải phương trình: x^2+9x^2/(x+3)^2=40 b) Tìm m sao cho phương trình:(m-1)x+3m-2=0 có nghiệm duy nhất thỏa mãn: x lớn hơn hoặc bằng 1
Giải các phương trình, hệ phương trình sau:
a) x4−2ax2+x+a2−a=0( a là tham số )
b){
xy=x+y−z |
xz=2(x−y+z) |
yz=3(y+z−x) |