Chương I - Căn bậc hai. Căn bậc ba

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Lê Tiểu Long

giải phương trình

\(\sqrt{5x-1}+\sqrt{9-x}=2x^2+3x-1\)

Akai Haruma
5 tháng 8 2020 lúc 13:10

Lời giải:
ĐK: $x\geq \frac{1}{5}$
PT $\Leftrightarrow (\sqrt{5x-1}-2)+(\sqrt[3]{9-x}-2)=2x^2+3x-5$

$\Leftrightarrow \frac{5(x-1)}{\sqrt{5x-1}+2}-\frac{x-1}{\sqrt[3]{(9-x)^2}+2\sqrt[3]{9-x}+2}=(x-1)(2x+5)$

$\Leftrightarrow (x-1)\left[2x+5+\frac{1}{\sqrt[3]{(9-x)^2}+2\sqrt[3]{9-x}+2}-\frac{5}{\sqrt{5x-1}+2}\right]=0$

Dễ thấy biểu thức trong ngoặc lớn luôn lớn hơn $0$ với mọi $x\geq \frac{1}{5}$

Do đó $x-1=0\Leftrightarrow x=1$ là nghiệm duy nhất của PT.


Các câu hỏi tương tự
Lê Hương Giang
Xem chi tiết
Miền Nguyễn
Xem chi tiết
Đỗ Lam Tư
Xem chi tiết
Hoàng Linh Chi
Xem chi tiết
Hiên Nguyễn
Xem chi tiết
khong có
Xem chi tiết
Lê Hương Giang
Xem chi tiết
Lê Hương Giang
Xem chi tiết
Đoàn Thị Thanh Loan
Xem chi tiết