Bài 6: Giải bài toán bằng cách lập hệ phương trình (Tiếp theo)

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Tường Nguyễn Thế

Giải phương trình: \(\sqrt{3x^2+6x+7}+\sqrt{5x^2+10x+14}=4-2x-x^2\)

tran nguyen bao quan
7 tháng 10 2018 lúc 10:56

Ta có \(\sqrt{3x^2+6x+7}+\sqrt{5x^2+10x+14}=\sqrt{3\left(x^2+2x+1\right)+4}+\sqrt{5\left(x^2+2x+1\right)+9}=\sqrt{3\left(x+1\right)^2+4}+\sqrt{5\left(x+1\right)^2+9}\ge\sqrt{4}+\sqrt{9}=2+3=5\left(1\right)\)\(4-2x-x^2=-\left(x^2+2x-4\right)=-\left(x^2+2x+1-5\right)=-\left(x+1\right)^2+5\le5\left(2\right)\)

Từ (1),(2)\(\Rightarrow5\le-\left(x-1\right)^2+5\le5\Rightarrow-\left(x-1\right)^2+5=5\Leftrightarrow\left(x-1\right)^2=0\Leftrightarrow x-1=0\Leftrightarrow x=1\left(tm\right)\)


Các câu hỏi tương tự
Tường Nguyễn Thế
Xem chi tiết
Tường Nguyễn Thế
Xem chi tiết
Tường Nguyễn Thế
Xem chi tiết
Tường Nguyễn Thế
Xem chi tiết
Tường Nguyễn Thế
Xem chi tiết
Tường Nguyễn Thế
Xem chi tiết
Tường Nguyễn Thế
Xem chi tiết
Tường Nguyễn Thế
Xem chi tiết
Tường Nguyễn Thế
Xem chi tiết