a) Đặt \(\left(x^2-7x;\sqrt{x^2-7x+8}\right)=\left(a;b\right)\left(b\ge0\right)\)
Phương trình đã cho tương đương với hệ
\(\left\{{}\begin{matrix}a+b=12\\b^2-a=8\end{matrix}\right.\)
\(\left\{{}\begin{matrix}a+b=12\\b^2+b=20\end{matrix}\right.\)
\(\left\{{}\begin{matrix}a+b=20\\\left[{}\begin{matrix}b=4\\b=-5\end{matrix}\right.\end{matrix}\right.\)(Loại no -5)
\(\left\{{}\begin{matrix}a=16\\b=4\end{matrix}\right.\)
Thay a;b vào chỗ đặt ban đầu, giải phương trình bậc 2 tìm nghiệm
c) Đặt \(\left(\sqrt{x-3};\sqrt{5-x}\right)=\left(a;b\right)\)
\(\left\{{}\begin{matrix}a+b=-\left(ab+3\right)\\a^2+b^2=2\end{matrix}\right.\)
\(\left\{{}\begin{matrix}a+b=-3-ab\\\left(a+b\right)^2-2ab=2\end{matrix}\right.\)
Lại đặt \(\left(a+b;ab\right)=\left(z;t\right)\)
\(\left\{{}\begin{matrix}z=-3-t\\z^2-2t=2\end{matrix}\right.\)
\(\left\{{}\begin{matrix}z=-3-t\\z^2-2\left(-3-z\right)=2\end{matrix}\right.\)
Tiếp tục giải ;v