b) cosx+cos3x+2cos5x=0
<=>cosx+cos5x+cos3x+cos5=0
<=>2cos3x*cos2x+2cos4x*cos=0
<=>2[4cos3x-3cosx]*cos2x+2[2cos22x-1]*cosx=0
<=>cosx[4cos2x-3]*cos2x+[2cos22x-1]*cosx=0
<=>cosx[4cos2x-3]*cos2x+(2cos2x-1)=0
<=>cosx[2cos2x-cos2x(4cos2x-3)-1]=0
<=>cosx[4cos2x-2-(8cos4-x-10cos2x+3)-1]=0
<=>cosx[-8cos4x+14cos2x-6]=0
\(\Leftrightarrow\left[\begin{array}{nghiempt}cosx=0\\cos^2x=1\\cos^2x=\frac{3}{4}\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}cosx=0\\cosx=\pm1\\cosx=\pm\frac{\sqrt{3}}{2}\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=\frac{\pi}{2}+k\pi\\x=k2\pi\\x=\pi+k2\pi\\x=\pm\frac{\pi}{6}+k2\pi\end{array}\right.\)