Violympic toán 8

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
nguyen ha giang

Giải phương trình: \(2x^4-21x^3+74x^2-105x+50=0\)

Như Trần
28 tháng 6 2019 lúc 7:16

Đây là phương trình đối xứng, cách giải những bài phương trình đối xứng khác cũng giống vậy nhé!

Xét x = 0 không phải là nghiệm của phương trình

Chia cả hai vế của phương trình cho x2, ta được:

\(2x^2-21x+74-\frac{105}{x}+\frac{50}{x^2}=0\\ \Rightarrow\left(2x^2+\frac{50}{x^2}\right)-\left(21x+\frac{105}{x}\right)+74=0\\ \Rightarrow2\left(x^2+\frac{25}{x^2}\right)-21\left(x+\frac{5}{x}\right)+74=0\)

Đặt \(x+\frac{5}{x}=y\Rightarrow x^2+\frac{25}{x^2}=y^2-10\)

Thay vào phương trình, ta được:

\(2\left(y^2-10\right)-21y+74=0\\ \Rightarrow2y^2-20-21y+74=0\\ \Rightarrow2y^2-21y+54=0\\ \Rightarrow\left(2y^2-12y\right)-\left(9y-54\right)=0\\ \Rightarrow2y\left(y-6\right)-9\left(y-6\right)=0\\ \Rightarrow\left(y-6\right)\left(2y-9\right)=0\\ \Rightarrow\left(x+\frac{5}{x}-6\right)\left(2x+\frac{10}{x}-9\right)=0\\ \Rightarrow x=1;x=2\)


Các câu hỏi tương tự
nguyen ha giang
Xem chi tiết
Omega Neo
Xem chi tiết
nguyen ha giang
Xem chi tiết
nguyen ha giang
Xem chi tiết
nguyen ha giang
Xem chi tiết
nguyen ha giang
Xem chi tiết
nguyen ha giang
Xem chi tiết
nguyen ha giang
Xem chi tiết
nguyen ha giang
Xem chi tiết