giải hệ phương trình
\(\left\{{}\begin{matrix}\sqrt{x-2}+\sqrt{y-3}=3\\2\sqrt{x-2}-3\sqrt{y-3}=-4\end{matrix}\right.\)
\(\left\{{}\begin{matrix}\dfrac{3x}{x+1}+\dfrac{2}{y+4}=4\\\dfrac{2x}{x+1}-\dfrac{5}{y+4}=4\end{matrix}\right.\)
Giải phương trình
1, \(\sqrt{2-x^2}=x^2-3x+3\)
2, \(2\sqrt{1-x}+\sqrt{x}=\sqrt{2-x}\)
3, \(\sqrt{5x^3+3x^2+3x-2}=\dfrac{x^2}{2}+3x-\dfrac{1}{2}\)
4, \(\sqrt{3x^3-5x^2+5x-2}-\dfrac{x^2}{2}-x=\dfrac{1}{2}\)
Giải phương trình:
1, \(4\sqrt{x+3}+\sqrt{19-3x}=x^2+2x+9\)
2, \(\sqrt{3x-8}-\sqrt{x+1}=\dfrac{2x-11}{5}\)
3, \(\sqrt{x+\dfrac{3}{x}}=\dfrac{x^2+7}{2\left(x+1\right)}\)
giải phương trình:
\(\dfrac{3x+3}{\sqrt{x}}=4+\dfrac{x+1}{\sqrt{x^2-x+1}}\)
giải phương trình
\(3\sqrt{x}+\dfrac{3}{2\sqrt{x}}< 2x+\dfrac{1}{2x}-7\)
\(\left(4x-1\right)+\sqrt{x^2+1}=2x^2+2x+1\)
\(\dfrac{\sqrt{-3x^2+x+4}+2}{x}< 2\)
Giải phương trình bằng phương pháp bất đẳng thức
1, \(\sqrt{x^2-6x+11}+\sqrt{x^2-6x+13}+\sqrt[4]{x^2-4x+5}=3+\sqrt{2}\)
2, \(\sqrt{x-10}+\sqrt{30-x}=x^2-40x+400+2\sqrt{10}\)
3, \(x^2-3x+3,5=\sqrt{\left(x^2-2x+2\right)\left(x^2-4x+5\right)}\)
4, \(\sqrt{5x^3+3x^2+3x-2}=\dfrac{x^2}{2}+3x-\dfrac{1}{2}\)
5, \(2\sqrt{7x^3-11x^2+25x-12}=x^2+6x-1\)
Giải các phương trình sau:
1. \(\sqrt{x^2-\dfrac{1}{4}+\sqrt{x^2+x+\dfrac{1}{4}}}=\dfrac{1}{2}\left(2x^3+x^2+2x+1\right)\)
2. \(x^2+4x+7=\left(x+4\right)\sqrt{x^2+7}\)
3. \(\sqrt{x-1}+\sqrt{x^3+x^2+x+1}=1+\sqrt{x^4-1}\)
4. \(\sqrt{x^2-3x+2}+\sqrt{x+3}=\sqrt{x-2}+\sqrt{x^2+2x-3}\)
5. \(x=\left(\sqrt{x}+2\right)\left(1-\sqrt{1-\sqrt{x}}\right)\)
6. \(2\sqrt[3]{2x-1}=x^3+1\)
7. \(\sqrt{x-\dfrac{1}{x}}+\sqrt{1-\dfrac{1}{x}}=x\)
Giải phương trình:
1. \(x^2+3x+8=\left(x+5\right)\sqrt{x^2+x+2}\)
2. \(10x^2-9x-8x\sqrt{2x^2-3x+1}+3=0\)
3. \(x^3+6x^2-2x+3-\left(5x-1\right)\sqrt{x^3+3}=0\)
4. \(4\sqrt{x+1}-1=3x+2\sqrt{1-x}+\sqrt{1-x^2}\)
5. \(4\sqrt{x+3}=1+4x+\dfrac{2}{x}\)
giải hệ phương trình
\(\left\{{}\begin{matrix}x^4-x^3+3x^2-4y-1=0\\\sqrt{\dfrac{x^2+4y^2}{2}}+\sqrt{\dfrac{x^2+2xy+4y^2}{3}}=x+2y\end{matrix}\right.\)