Cho hệ pt:\(\left\{{}\begin{matrix}x+my=m+1\\\\mx+y=2m\end{matrix}\right.\)
1)Giải hpt khi m=2
2)Tìm m để hpt thỏa mãn \(\left\{{}\begin{matrix}x\ge2\\\\y\ge1\end{matrix}\right.\)
10. giải hpt bằng phương pháp thế:
6) \(\left\{{}\begin{matrix}2y-4=0\\3x+y=-4\end{matrix}\right.\)
7) \(\left\{{}\begin{matrix}4x-6y=2\\x-\dfrac{3}{2}y=\dfrac{1}{2}\end{matrix}\right.\)
8) \(\left\{{}\begin{matrix}\dfrac{x}{3}+\dfrac{y}{2}=1\\2x+3y=\dfrac{2}{5}\end{matrix}\right.\)
9) \(\left\{{}\begin{matrix}3x-2=y\\2x+3y=6\end{matrix}\right.\)
10) \(\left\{{}\begin{matrix}2x+3y=2\\4x-y-1=0\end{matrix}\right.\)
11) \(\left\{{}\begin{matrix}3x-2y=3\\2x-\dfrac{4}{3}y=1\end{matrix}\right.\)
12) \(\left\{{}\begin{matrix}5x+y=3\\2x+0,4y=1,2\end{matrix}\right.\)
giúp mk vs ạ mai mk học rồi
giải hpt bằng phương pháp thế:
9) \(\left\{{}\begin{matrix}3x-2=y\\2x+3y=6\end{matrix}\right.\)
10) \(\left\{{}\begin{matrix}2x+3y=2\\4x-y-1=0\end{matrix}\right.\)
11) \(\left\{{}\begin{matrix}3x-2y=3\\2x-\dfrac{4}{3}y=1\end{matrix}\right.\)
12) \(\left\{{}\begin{matrix}5x+y=3\\2x+0,4y=1,2\end{matrix}\right.\)
giúp mk vs ạ mai mk học rồi
giải hpt:
\(\left\{{}\begin{matrix}6x+6y=5xy\\\dfrac{4}{x}+\dfrac{3}{y}=1\end{matrix}\right.\)
Tìm m để HPT sau :
b,\(\left\{{}\begin{matrix}mx+y=m+1\\x+my=2\end{matrix}\right.\) vô nghiệm
c,\(\left\{{}\begin{matrix}x+my=2\\mx-2y=1\end{matrix}\right.cónghiệm\left(x;y\right)thỏamãn:x>0,y< 0\)
d,\(\left\{{}\begin{matrix}mx+y=4\\x-my=1\end{matrix}\right.cónghiệm\left(x;y\right)thỏamãn:x+y=\dfrac{8}{m^2+1}\)
\(\left\{{}\begin{matrix}\left(x+y\right)^2+3\left(x+y\right)=4\\2x+7y=12\end{matrix}\right.\)
giải hpt
Hpt tương đương với hpt\(\left\{{}\begin{matrix}2x-5y=5\\2x+3y=5\end{matrix}\right.\)là:
A,\(\left\{{}\begin{matrix}2x-5y=5\\4x+8y=10\end{matrix}\right.\) B,\(\left\{{}\begin{matrix}2x-5y=5\\0x-2y=0\end{matrix}\right.\) C,\(\left\{{}\begin{matrix}2x-5y=5\\2x-8y=10\end{matrix}\right.\) D,\(\left\{{}\begin{matrix}\frac{2}{5}x-y=1\\\frac{2}{3}x+y=\frac{5}{3}\end{matrix}\right.\)
Giải thích hộ mk nha
Giải HPT \(\left\{{}\begin{matrix}x^2+xy+y^2=4\\x+xy+y=2\end{matrix}\right.\)
Giải HPT: \(\left[{}\begin{matrix}\sqrt{x}\left(1+y\right)=2y\\\sqrt{y}\left(1+z\right)=2z\\\sqrt{z}\left(1+x\right)2x\end{matrix}\right.\)