a)xét tam giác HBA và tam giác ABC có:
góc B chung
góc BAC=góc BHA
\(\Rightarrow\) tam giác HBA ~ tam giác ABC(g.g)
b)tam giác ABC vuông tại A nên theo định lí pytago:
\(BC=\sqrt{\left(AB^2+AC^2\right)}=\sqrt{\left(12^2+16^2\right)}=\sqrt{400}=20\left(cm\right)\)
theo câu a ta có:
\(\dfrac{AH}{AC}=\dfrac{AB}{BC}=\dfrac{HB}{AB}hay\dfrac{AH}{16}=\dfrac{12}{20}=\dfrac{HB}{12}\\ \Rightarrow AH=\dfrac{12\cdot16}{20}=9,6\left(cm\right);HB=\dfrac{12\cdot12}{20}=7,2\left(cm\right)\)
c)AD là phân giác góc A nên:
\(\dfrac{BD}{DC}=\dfrac{AB}{AC}\Rightarrow\dfrac{BD}{BD+CD}=\dfrac{AB}{AB+AC}=\dfrac{BD}{BC}hay\dfrac{BD}{20}=\dfrac{12}{12+16}\\ \Rightarrow BD=\dfrac{12\cdot20}{12+16}\approx8,6\left(cm\right)\)
ta có BC=BD+DC nên DC=BC-BD=20-8,6=11,4(cm)
d) ta có: MN//BC nên theo hệ quả định lí talet:
\(\dfrac{MN}{BC}=\dfrac{AM}{AB}hay\dfrac{MN}{20}=\dfrac{AM}{12}\left(1\right)\)
ta lại có: \(K\in MN\Rightarrow\dfrac{AK}{AH}=\dfrac{AM}{AB}hay\dfrac{3,6}{9,6}=\dfrac{AM}{12}=\dfrac{3}{8}\left(2\right)\)
từ (1) và (2) \(\Rightarrow\dfrac{AM}{20}=\dfrac{3}{8}\left(=\dfrac{AM}{12}\right)\Rightarrow AM=\dfrac{3\cdot20}{8}=7,5\left(cm\right)\)
ta có KH=AH-AK=9,6-3,6=6(cm)
ta có: MN//BC nên MNCB là hình thang
\(\Rightarrow S_{MNCB}=\dfrac{1}{2}KH\left(MN+BC\right)=\dfrac{1}{2}\cdot6\cdot\left(7,5+20\right)=82,5\left(cm^2\right)\)
câu d) bn có thể tính diện tích tam giác ABC và tam giác MAN rồi trừ đi là được diện tích MNCB
giải hộ mk
giải hộ mk!!
giải hộ mk
giải hộ mk nha!!
giải hộ mk ah!!
