1.A,Ta có:
\(\frac{x+5}{x+3}< 1\)
\(\Leftrightarrow1+\frac{2}{x+3}< 1\)
\(\Leftrightarrow\frac{2}{x+3}< 0\)
\(\Leftrightarrow x+3< 0\)
\(\Leftrightarrow x< -3\)
B,\(\frac{x+3}{x+4}>1\)
\(\Leftrightarrow\frac{x+4-1}{x+4}>1\)
\(\Leftrightarrow1+\frac{-1}{x+4}>1\)
\(\Leftrightarrow\frac{-1}{x+4}>0\)
\(\Leftrightarrow x+4< 0\)
\(\Leftrightarrow x< -4\)
2.A,Ta có:
\(\left(2x-1\right)^2\ge0,\forall x\)
\(\Leftrightarrow-3\left(2x-1\right)^2\le0\)
\(\Leftrightarrow5-3\left(2x-1\right)^2\le5\)
Vậy \(Max_A=5\) khi \(2x-1=0\Leftrightarrow x=\frac{1}{2}\)
Câu B hình như tìm GTNN thì phải ![]()