Violympic toán 9

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Hoai Bao Tran

giải hệ sau

\(\left\{{}\begin{matrix}\left(x-1\right)\sqrt{y}+\left(y-1\right)\sqrt{x}=\sqrt{2xy}\\x\sqrt{y-1}+y\sqrt{x-1}=xy\end{matrix}\right.\)

Hung nguyen
14 tháng 3 2018 lúc 15:09

Đề bài cho dư. Chỉ cần vế dưới là đủ rồi.

Điều kiện: \(x,y\ge1\)

Ta có:

\(\sqrt{x\left(xy-x\right)}+\sqrt{y\left(xy-y\right)}\le\dfrac{x+xy-x}{2}+\dfrac{y+xy-y}{2}=xy\)

Dấu = xảy ra khi \(x=y=2\)

Nguyễn Mạnh Đạt
18 tháng 3 2018 lúc 20:06

PT(1)⇔(x+2013−−−−−−−√−x+2012−−−−−−−√)+(x+2012−−−−−−−√−x+2011−−−−−−−√)PT(1)⇔(x+2013−x+2012)+(x+2012−x+2011)

=(y+2012−−−−−−−√−y+2011−−−−−−−√)+(z+2013−−−−−−−√−z+2012−−−−−−−√)=(y+2012−y+2011)+(z+2013−z+2012)

⇔1x+2012−−−−−−−√+x+2011−−−−−−−√+1 sqrtx+2013+x+2012−−−−−−−√⇔1x+2012+x+2011+1 sqrtx+2013+x+2012

=1y+2012−−−−−−−√+y+2011−−−−−−−√+1 sqrtz+2013+z+2012−−−−−−−√=1y+2012+y+2011+1 sqrtz+2013+z+2012

Giả sử: x≥y;x≥z, ta có:

1x+2012−−−−−−−√+x+2011−−−−−−−√≤1y+2012−−−−−−−√+y+2011−−−−−−−√1x+2012+x+2011≤1y+2012+y+2011

1x+2013−−−−−−−√+x+2012−−−−−−−√≤1z+2013−−−−−−−√+z+2012−−−−−−−√1x+2013+x+2012≤1z+2013+z+2012

⇒1x+2012−−−−−−−√+x+2011−−−−−−−√+1 sqrtx+2013+x+2012−−−−−−−√⇒1x+2012+x+2011+1 sqrtx+2013+x+2012

≤1y+2012−−−−−−−√+y+2011−−−−−−−√+1 sqrtz+2013+z+2012−−−−−−−√≤1y+2012+y+2011+1 sqrtz+2013+z+2012

1x+2012−−−−−−−√+x+2011−−−−−−−√+1x+2013−−−−−−−√+x+2012−−−−−−−√1x+2012+x+2011+1x+2013+x+2012

=1y+2012−−−−−−−√+y+2011−−−−−−−√+1 sqrtz+2013+z+2012−−−−−−−√=1y+2012+y+2011+1 sqrtz+2013+z+2012

⇒x=y=z⇒x=y=z

Đây là đề thi trên báo THTT phải không


Các câu hỏi tương tự
Mỹ Lệ
Xem chi tiết
Kim Trí Ngân
Xem chi tiết
em ơi
Xem chi tiết
Đừng gọi tôi là Jung Hae...
Xem chi tiết
Kiều Ngọc Tú Anh
Xem chi tiết
Kun ZERO
Xem chi tiết
Wang Soo Yi
Xem chi tiết
Hoai Bao Tran
Xem chi tiết
Nguyễn Thu Trà
Xem chi tiết