Lời giải:
Đặt $x-y=a; xy=b$ thì hpt trở thành:
\(\left\{\begin{matrix}
x-y+2xy=5\\
(x-y)^2+3xy=7\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix}
a+2b=5\\
a^2+3b=7\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix}
3a+6b=15\\
2a^2+6b=14\end{matrix}\right.\)
\(\Rightarrow 2a^2-3a=-1\)
$\Leftrightarrow 2a^2-3a+1=0$
$\Leftrightarrow (a-1)(2a-1)=0$
$\Rightarrow a=1$ hoặc $a=\frac{1}{2}$
Nếu $a=1$ thì $b=2$. Khi đó: $x-y=1; xy=2$ nên theo định lý Viet đảo thì $x,-y$ là nghiệm của pt:
$X^2-X-2=0$
$\Rightarrow (x,-y)=(2,-1), (-1,2)\Rightarrow (x,y)=(2,1), (-1,-2)$
Nếu $a=\frac{1}{2}$ thì $b=\frac{9}{4}$. Khi đó theo định lý Viet đảo thì $x,-y$ là nghiệm của pt:
$X^2-\frac{1}{2}X-\frac{9}{4}=0$
$\Rightarrow (x,-y)=(\frac{1+\sqrt{37}}{4}, \frac{1-\sqrt{37}}{4}), (\frac{1-\sqrt{37}}{4}, \frac{1+\sqrt{37}}{4})$
$\Rightarrow (x,y)= (\frac{1+\sqrt{37}}{4}, \frac{-1+\sqrt{37}}{4}), (\frac{1-\sqrt{37}}{4}, \frac{-1-\sqrt{37}}{4})$
Lần sau bạn lưu ý không đăng 1 bài nhiều lần. Nếu bạn còn đăng vậy lần nữa sẽ bị tính là spam và bị xóa không thương tiếc đó nhé.