Bài 6: Hệ thức Vi-et và ứng dụng

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
nguyễn hoàng anh

giải hệ phương trình

x+y+z=1

x2+y2+z2

\(x^3+y^3+z^3=1\)

@Nk>↑@
7 tháng 10 2019 lúc 12:51

Đề:\(\left\{{}\begin{matrix}x+y+z=1\\x^2+y^2+z^2=1\\x^3+y^3+z^3=1\end{matrix}\right.\). Đề nhớ ghi đủ nha hiu

Áp dụng hằng đẳng thức:

\(x^3+y^3+z^3-3xyz=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)\)

\(\Leftrightarrow1-3xyz=1-xy-yz-zx\)

\(\Leftrightarrow3xyz=xy+yz+zx\)(1)

Lại có: \(1=x+y+z\)

\(\Rightarrow1=\left(x+y+z\right)^2=x^2+y^2+z^2+2\left(xy+yz+zx\right)=1+2\left(xy+yz+zx\right)\)

\(\Rightarrow2\left(xy+yz+zx\right)=0\)

\(\Rightarrow xy+yz+zx=0\)(2)

Từ (1) và (2) ta suy ra: \(3xyz=0\)

\(\Leftrightarrow xyz=0\)

\(\Rightarrow\) x=0 hoặc y=0 hoặc z=0

*Xét x=0, ta có: \(\left\{{}\begin{matrix}y+z=1\left(3\right)\\y^2+z^2=1\\y^3+z^3=1\end{matrix}\right.\)

Từ \(\left(3\right)\Leftrightarrow y^2+z^2+2yz=1\)

\(\Leftrightarrow1+2xy=1\)

\(\Leftrightarrow2xy=0\)

\(\Leftrightarrow\left[{}\begin{matrix}y=0\\z=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}z=1\\y=1\end{matrix}\right.\)

Tương tự, ta giải các TH kia cũng vậy:

\(y=0\Leftrightarrow\left[{}\begin{matrix}z=0\\x=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=1\\y=1\end{matrix}\right.\)

\(z=0\Leftrightarrow\left[{}\begin{matrix}x=0\\y=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}y=1\\x=1\end{matrix}\right.\)

Vậy nghiệm của phương trình trên là:

\(\left(x;y;z\right)=\left\{\left(1;0;0\right);\left(0;1;0\right);\left(0;0;1\right)\right\}\)


Các câu hỏi tương tự
Kido Mini
Xem chi tiết
Le Gia Han
Xem chi tiết
Chanhh
Xem chi tiết
Tri Truong
Xem chi tiết
Candy Moonz
Xem chi tiết
Eren
Xem chi tiết
Vũ Vếu
Xem chi tiết
KYAN Gaming
Xem chi tiết
Vũ Mai
Xem chi tiết