Giải hệ phương trình : \(\left\{{}\begin{matrix}x^2+y^2+x+y=8\\2x^2+y^2-3xy+3x-2y+1=0\end{matrix}\right.\)
Giải hệ phương trình sau: \(\left\{{}\begin{matrix}\sqrt{\dfrac{x}{y}}+\sqrt{\dfrac{y}{x}}=\dfrac{5}{2}\\x+y-5=0\end{matrix}\right.\)
Giải hệ phương trình :
\(\left\{{}\begin{matrix}x^2+y^3=1\\x^2+y^3=x^3+y^2\end{matrix}\right.\)
Cho hệ phương trình: 2X +Y = 3m-2 ( m là tham số ) X - Y = 5 a) Giải hệ phương trình khi m = - 4 ; b) Tìm m để hệ phương trình có nghiệm (x; y) thỏa mãn: x + y = 13.
Giải hệ phương trình \(\left\{{}\begin{matrix}\left(2x+y\right)y+1-4y=0\\xy\left(x+y\right)+x-3y=0\end{matrix}\right.\)
giải hệ phương trình
\(\left\{{}\begin{matrix}x\sqrt{x}-3y\sqrt{x}=10\\y\sqrt{y}-3x\sqrt{y}=5\end{matrix}\right.\)
Giải hệ phương trình: \(\left\{{}\begin{matrix}\sqrt{x}+\sqrt{y}+\sqrt{z}=\\2\sqrt{x}+5\sqrt{y}+10\sqrt{z}=\sqrt{xyz}\end{matrix}\right.\)
bằng phương pháp thế , giải các hệ phương trình sau rồi tính nghiệm gần đúng chính xác đến hai số thập phân
a,\(\left\{{}\begin{matrix}x-\sqrt{3}y=0\\\sqrt{3}x+2y=1+\sqrt{3}\end{matrix}\right.\)
b,\(\left\{{}\begin{matrix}\sqrt{2}x-\sqrt{5}y=1\\x+\sqrt{5}y=\sqrt{2}\end{matrix}\right.\)
c,\(\left\{{}\begin{matrix}\sqrt{2}x+\sqrt{5}y=2\\x+\sqrt{5}y=2\end{matrix}\right.\)
d,\(\left\{{}\begin{matrix}x-2\sqrt{2}y=\sqrt{3}\\\sqrt{2}x+y=1-\sqrt{6}\end{matrix}\right.\)
bằng phương pháp thế , giải các hệ phương trình sau rồi tính nghiệm gần đúng chính xác đến hai số thập phân
a,\(\left\{{}\begin{matrix}x-\sqrt{3}y=0\\\sqrt{3}x+2y=1+\sqrt{3}\end{matrix}\right.\)
b,\(\left\{{}\begin{matrix}\sqrt{2}x-\sqrt{5}y=1\\x+\sqrt{5}y=\sqrt{2}\end{matrix}\right.\)
c,\(\left\{{}\begin{matrix}\sqrt{2}x+\sqrt{5}y=2\\x+\sqrt{5}y=2\end{matrix}\right.\)
d,\(\left\{{}\begin{matrix}x-2\sqrt{2}y=\sqrt{3}\\\sqrt{2}x+y=1-\sqrt{6}\end{matrix}\right.\)