Tìm GTNN của biểu thức:
\(A=\dfrac{x^2}{x+y}+\dfrac{y^2}{y+z}+\dfrac{z^2}{x+z}\)
Biết\(\left\{{}\begin{matrix}x.y.z>0\\\sqrt{xy}+\sqrt{yz}+\sqrt{zx}=1\end{matrix}\right.\)
Giải hệ phương trình :\(\left\{{}\begin{matrix}x+xy+y=1\\y+yz+z=4\\z+xz+x=9\end{matrix}\right.\) trong đó x,y,z>0
Cho \(\left\{{}\begin{matrix}x,y,z>0\\xy+yz+zx=1\end{matrix}\right.\)
Tính \(S=x\sqrt{\dfrac{\left(1+y^2\right)\left(1+z^2\right)}{1+x^2}}+y\sqrt{\dfrac{\left(1+z^2\right)+\left(1+x^2\right)}{1+y^2}}+z\sqrt{\dfrac{\left(1+x^2\right)+\left(1+y^2\right)}{1+z^2}}\)
Giải hệ phương trình \(\left\{{}\begin{matrix}6x+\dfrac{3}{x+y}=13\\12\left(x^2+xy+y^2\right)+\dfrac{9}{\left(x+y\right)^2}=85\end{matrix}\right.\)
1) GHPT \(\left\{{}\begin{matrix}\sqrt{x+1}+\sqrt{2-y}=\sqrt{3}\\\sqrt{2-x}+\sqrt{y+1}=\sqrt{3}\end{matrix}\right.\)
2) GPT \(7x^2+7x=\sqrt{\dfrac{4x+9}{28}}\)
3) tìm số dương x,y,z thỏa \(x+y+z=\sqrt{xy}+\sqrt{yz}+\sqrt{zx}=2016\)
Giải hpt:
\(\left\{{}\begin{matrix}\dfrac{x}{x^2+1}+\dfrac{y}{y^2+1}=\dfrac{2}{3}\\\left(x+y\right)\left(1+\dfrac{1}{xy}\right)=6\end{matrix}\right.\)
Giải hệ phương trình :
a) \(\left\{{}\begin{matrix}x^2+y^2=1\\x^2+y^2=1\end{matrix}\right.\)
b)\(\left\{{}\begin{matrix}\sqrt{x}+\sqrt{y}+\sqrt{z}=2014\\\dfrac{1}{3x+2y}+\dfrac{1}{3y+2z}+\dfrac{1}{3z+2x}=\dfrac{1}{x+2y+3z}+\dfrac{1}{y+2x+3x}+\dfrac{1}{z+2x+3y}\end{matrix}\right.\)
1.giải hệ phương trình:
\(\left\{{}\begin{matrix}2x-y=3\\x+y=0\end{matrix}\right.\)
2.Rút gọn biểu thức
\(A=\dfrac{x+20}{x-4}+\dfrac{2}{\sqrt{x}+2}-\dfrac{6}{\sqrt{x}-2}\) với x\(\ge\)0;x\(\ne\)4
1 Giải hệ pt \(\left\{{}\begin{matrix}\left(x-1\right)^3=1-\dfrac{27}{y^3}\\x^2+\dfrac{9}{y^2}=2x\end{matrix}\right.\)
2 CM \(n^4-10n^2+9\) chia hết 384 với mọi n lẻ
3 cho \(0\le x\le\dfrac{1}{2}\) tìm Max Q=\(x^2\left(1-2x\right)\)
4 cho x,y,z dương thỏa \(x^2+y^2+z^2=3xyz\).CM \(\dfrac{x^2}{x^4+yz}+\dfrac{y^2}{y^4+xz}+\dfrac{z^2}{z^4+xy}\le\dfrac{3}{2}\)