Giải hệ phương trình: \(\left\{{}\begin{matrix}\dfrac{1}{x}-\sqrt{y-1}=4\\\dfrac{2}{x}-\sqrt{y-1}=2\end{matrix}\right.\)
Giải hệ phương trình
\(\left\{{}\begin{matrix}4\left(2x-y+3\right)-3\left(x-2y+3\right)=48\\3\left(3x-4y+3\right)+4\left(4x-2y-9\right)=48\end{matrix}\right.\)
\(\left\{{}\begin{matrix}6\left(x+y\right)=8+2x-3y\\5\left(y-x\right)=5+3x+2y\end{matrix}\right.\)
\(\left\{{}\begin{matrix}-2\left(2x+1\right)+1,5=3\left(y-2\right)-6x\\11,5-4\left(3-x\right)=2y-\left(5-x\right)\end{matrix}\right.\)
\(\left\{{}\begin{matrix}\dfrac{8x-5y-3}{7}+\dfrac{11y-4x-7}{5}=12\\\dfrac{9x+4y-13}{5}-\dfrac{3\left(x-2\right)}{4}=15\end{matrix}\right.\)
\(\left\{{}\begin{matrix}2\sqrt{3}x-\sqrt{5}y=2\sqrt{6}-\sqrt{15}\\3x-y=3\sqrt{2}-\sqrt{3}\end{matrix}\right.\)
giải các hệ phương trình sau:
\(\left\{{}\begin{matrix}2x+\dfrac{Y}{\sqrt{4X^{2^{ }}+1}+2X}+Y^{2^{ }}=0\\4\left(\dfrac{X}{Y}\right)^{2^{ }}+2\sqrt{4X^{2^{ }}+1}+Y^{2^{ }}=3\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x+y+z=6\\xy+yz+zx=11\\xyz=6\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x^{3^{ }}-y^{3^{ }}-15y-14=3\left(2y^{2^{ }}-x\right)\\4x^{3^{ }}+6xy+15x+3=0\end{matrix}\right.\)
Giải hệ phương trình sau:
a. \(\left\{{}\begin{matrix}\dfrac{5}{\sqrt{x-2}}+\sqrt{3-y}=8\\\dfrac{2}{\sqrt{x-2}}+3\sqrt{3-y}=11\end{matrix}\right.\)
b. \(\left\{{}\begin{matrix}\dfrac{5}{\sqrt{x}-2}+\sqrt{3-y}=8\\\dfrac{2}{\sqrt{x}-2}+3\sqrt{3-y}=11\end{matrix}\right.\)
c. \(\left\{{}\begin{matrix}3\sqrt{2x-1}+\dfrac{4}{2-\sqrt{y}}=10\\5\sqrt{2x-1}-\dfrac{8}{2-\sqrt{y}}=2\end{matrix}\right.\)
Giải hệ phương trình sau bằng phương pháp thế
a)
\(\left\{{}\begin{matrix}\sqrt{5}+2)x+y=3-\sqrt{5}\\-x+2y=6-2\sqrt{5}\end{matrix}\right.\)
b)
\(\left\{{}\begin{matrix}5\left(x+2y\right)=3x-1\\2x+4=3\left(x-5y\right)-12\end{matrix}\right.\)
Giải hệ phương trình
a)\(\left\{{}\begin{matrix}x+y=\dfrac{x-3}{2}\\x+2y=\dfrac{2-4y}{15}\end{matrix}\right.\) b)\(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=-1\\\dfrac{3}{x}-\dfrac{2}{y}=7\end{matrix}\right.\)
c)\(\left\{{}\begin{matrix}\sqrt{x+3}-2\sqrt{y+1}=2\\2\sqrt{x+3}+\sqrt{y+1}=4\end{matrix}\right.\) d)\(\left\{{}\begin{matrix}\dfrac{7}{\sqrt{x}-7}-\dfrac{4}{\sqrt{y}+6}=\dfrac{5}{3}\\\dfrac{5}{\sqrt{x}-7}+\dfrac{3}{\sqrt{y}+6}=2\dfrac{1}{9}\end{matrix}\right.\)
Giải hệ phương trình : \(\)\(\left\{{}\begin{matrix}\sqrt{y+2x-1}+\sqrt{1-y}=y+2\\x\sqrt{x}=\sqrt{y\left(x-1\right)}+\sqrt{x^2-y}\end{matrix}\right.\)
giải hệ pt bằng phương pháp thế:
a,\(\left\{{}\begin{matrix}3x+y=-2\\-9x-39=6\end{matrix}\right.\)
b,\(\left\{{}\begin{matrix}x+y=101\\-x+y=-1\end{matrix}\right.\)
c,\(\left\{{}\begin{matrix}x+y=2\\\dfrac{1}{2}x+y=\dfrac{5}{4}\end{matrix}\right.\)
d,\(\left\{{}\begin{matrix}x-5y=16\\10y-2x=-32\end{matrix}\right.\)
Giải các hệ phương trình sau bằng cách đặt ẩn số phụ:
a) \(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{4}{5}\\\dfrac{1}{x}-\dfrac{1}{y}=\dfrac{1}{5}\end{matrix}\right.\);
b) \(\left\{{}\begin{matrix}\dfrac{15}{x}-\dfrac{7}{y}=9\\\dfrac{4}{x}+\dfrac{9}{y}=35\end{matrix}\right.\);
c) \(\left\{{}\begin{matrix}\dfrac{1}{x+y}+\dfrac{1}{x-y}=\dfrac{5}{8}\\\dfrac{1}{x+y}-\dfrac{1}{x-y}=-\dfrac{3}{8}\end{matrix}\right.\);
d) \(\left\{{}\begin{matrix}\dfrac{4}{2x-2y}+\dfrac{5}{3x+y}=-2\\\dfrac{3}{3x+y}-\dfrac{5}{2x-3y}=21\end{matrix}\right.\);
e) \(\left\{{}\begin{matrix}\dfrac{7}{x-y+2}-\dfrac{5}{x+y-1}=4,5\\\dfrac{3}{x-y+2}+\dfrac{2}{x+y-1}=4\end{matrix}\right.\).