Giải hệ phương trình sau: \(\left\{{}\begin{matrix}2\left(xy+1\right)=x\left(x+y\right)+2\\3xy-x+3=\sqrt{x+2y+1}+\sqrt{x+4y+4}\end{matrix}\right.\)
Giải hệ phương trình:
\(\left\{{}\begin{matrix}x^3+2y^2+xy^2=2+x-2x^2\\4y^2=\left(\sqrt{y^2+1}+1\right)\left(y^2-x^3+3x-2\right)\end{matrix}\right.\)
giải hệ: a, \(\left\{{}\begin{matrix}x^2+\frac{1}{y^2}+\frac{x}{y}=3\\x+\frac{1}{y}+\frac{x}{y}=3\end{matrix}\right.\)
b, \(\left\{{}\begin{matrix}\sqrt[]{x-1}+\sqrt[]{y-1}=2\\\frac{1}{x}+\frac{1}{y}=1\end{matrix}\right.\)
c,\(\left\{{}\begin{matrix}x\sqrt[]{x}+y\sqrt[]{y}=35\\x\sqrt[]{y}+y\sqrt[]{x}=30\end{matrix}\right.\)
d,\(\left\{{}\begin{matrix}x^2+xy+y^2=3\\x+xy+y=-1\end{matrix}\right.\)
e,\(\left\{{}\begin{matrix}\left(\frac{x}{y}\right)^3+\left(\frac{x}{y}\right)^2=12\\\left(xy\right)^2+xy=6\end{matrix}\right.\)
giải hệ phương trình: \(\left\{{}\begin{matrix}x^2+2y=xy+4\\x^2-x+3-x\sqrt{6-x}=\left(y-3\right)\sqrt{y-3}\end{matrix}\right.\)
Giải hệ phương trình: \(\left\{{}\begin{matrix}\sqrt{x}+\sqrt{6-y}=2\sqrt{3}\\\sqrt{y}+\sqrt{6-x}=2\sqrt{3}\end{matrix}\right.\)
Giải hệ phương trình:
\(\left\{{}\begin{matrix}\sqrt{x}+\sqrt[4]{32-x}=y^2-3\\\sqrt[4]{x}+\sqrt{32-x}=24-6y\end{matrix}\right.\)
Giải hệ phương trình:
a)\(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=2\\\dfrac{2}{xy}-\dfrac{1}{z^2}=4\end{matrix}\right.\)
b)\(\left\{{}\begin{matrix}y=2\sqrt{x-1}\\\sqrt{x+y}=x^2-y\end{matrix}\right.\)
c)\(\left\{{}\begin{matrix}xy-\dfrac{x}{y}=9.6\\xy-\dfrac{y}{x}=7.5\end{matrix}\right.\)
d)\(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=2\\\dfrac{2}{xy}-\dfrac{1}{z^2}=4\end{matrix}\right.\)
giải hpt:
a)\(\left\{{}\begin{matrix}\dfrac{10}{\sqrt{12x-3}}+\dfrac{5}{\sqrt{4y+1}}=1\\\dfrac{7}{\sqrt{12x-3}}+\dfrac{8}{\sqrt{4y+1}}=1\end{matrix}\right.\)
b)\(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=4\\x\left(1+4y\right)+y=2\end{matrix}\right.\)
c)\(\left\{{}\begin{matrix}x^2+x+1=3y\\y^2+y+1=3x\end{matrix}\right.\)
giải hệ pt: \(\left\{{}\begin{matrix}x+y-\sqrt{xy}=3\\\sqrt{x+1}+\sqrt{y+1}=4\end{matrix}\right.\)