Lời giải:
HPT \(\Leftrightarrow \)\(\left\{\begin{matrix} x+y=2\\ x^2+(x^2+xy)+y=8\end{matrix}\right.\Rightarrow \left\{\begin{matrix} x+y=2\\ x^2+x(x+y)+y=8\end{matrix}\right.\)
\(\Rightarrow \left\{\begin{matrix} x+y=2\\ x^2+2x+y=8\end{matrix}\right.\)
\(\Rightarrow x^2+x+2=8\)
\(\Leftrightarrow x^2+x-6=0\Leftrightarrow (x-2)(x+3)=0\Rightarrow \left[\begin{matrix} x=2\\ x=-3\end{matrix}\right.\)
Nếu \(x=2\Rightarrow y=2-x=0\). Ta có cặp \((x,y)=(2,0)\) thỏa mãn
Nếu \(x=-3\Rightarrow y=2-x=5\). Ta có cặp \((x,y)=(-3,5)\) thỏa mãn.