Bài 4: Ôn tập chương Hàm số lượng giác và phương trình lượng giác

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Sonyeondan Bangtan

Giải các pt sau:

a) \(3\left(\sin x+\cos x\right)-4\sin x\cos x=0\)

b) \(12\left(\sin x-\cos x\right)-\sin2x=2\)

Lê Thị Thục Hiền
30 tháng 6 2021 lúc 8:25

a)Đặt \(t=sinx+cosx\);\(t\in\left[-\sqrt{2};\sqrt{2}\right]\)

\(\Leftrightarrow t^2=sin^2+2sinx.cosx+cos^2x\)

\(\Leftrightarrow t^2=1+2sinx.cosx\)

\(\Leftrightarrow\dfrac{t^2-1}{2}=sinx.cosx\)

Pttt: \(3t-4.\dfrac{t^2-1}{2}=0\) \(\Leftrightarrow-2t^2+3t+2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}t=2\left(ktm\right)\\t=-\dfrac{1}{2}\left(tm\right)\end{matrix}\right.\)

\(\Rightarrow sinx.cosx=-\dfrac{3}{8}\) \(\Leftrightarrow2sinx.cosx=-\dfrac{3}{4}\)\(\Leftrightarrow sin2x=-\dfrac{3}{4}\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}.arc.sin\left(-\dfrac{3}{4}\right)+k\pi\\x=\dfrac{\pi}{2}-\dfrac{1}{2}.arc.sin\left(-\dfrac{3}{4}\right)+k\pi\end{matrix}\right.\)\(k\in Z\)

Vậy...

b)Pt 

Đặt \(t=sinx-cosx;t\in\left[-\sqrt{2};\sqrt{2}\right]\)

\(\Leftrightarrow t^2-1=-2sinx.cosx\)

Pttt:\(12t+t^2-1=2\)

\(\Leftrightarrow\left[{}\begin{matrix}t=-6+\sqrt{39}\left(tm\right)\\t=-6-\sqrt{39}\left(ktm\right)\end{matrix}\right.\)

\(\Rightarrow cosx+sinx=-6+\sqrt{39}\)

\(\Leftrightarrow\sqrt{2}.cos\left(x-\dfrac{\pi}{4}\right)=-6+\sqrt{39}\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{4}+arc.cos\left(\dfrac{-6+\sqrt{39}}{\sqrt{2}}\right)+k2\pi\\x=\dfrac{\pi}{4}-arc.cos\left(\dfrac{-6+\sqrt{39}}{2}\right)+k2\pi\end{matrix}\right.\)\(,k\in Z\)

Vậy...(Nghiệm xấu)


Các câu hỏi tương tự
thai thai
Xem chi tiết
Sonyeondan Bangtan
Xem chi tiết
Thùy Oanh Nguyễn
Xem chi tiết
xin gam
Xem chi tiết
Violet
Xem chi tiết
Nguyễn Hạnh
Xem chi tiết
Quy Le Ngoc
Xem chi tiết
Quy Le Ngoc
Xem chi tiết
Julian Edward
Xem chi tiết