Đặt x3 = a
pt <=> 3a2 - 10a + 3 = 0
<=> (a - \(\dfrac{1}{3}\))(a - 3) = 0
<=> \(\left[{}\begin{matrix}a=\dfrac{1}{3}\\a=3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{\sqrt[3]{3}}\\x=\sqrt[3]{3}\end{matrix}\right.\)
Đặt x3 = a
pt <=> 3a2 - 10a + 3 = 0
<=> (a - \(\dfrac{1}{3}\))(a - 3) = 0
<=> \(\left[{}\begin{matrix}a=\dfrac{1}{3}\\a=3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{\sqrt[3]{3}}\\x=\sqrt[3]{3}\end{matrix}\right.\)
Mọi người giải dùm mình hai bài toán nâng cao này với, cảm ơn trước ạ.
1/ Giải phương trình bằng cách đặt ẩn phụ u,v (không giải bằng cách nhân lượng liên hợp ạ, tại em giải rồi): √(2x²+x+9) + √(2x²-x+1) = x+4.
2/ Giải phương trình bằng cách nhân lượng liên hợp hoặc đặt ẩn phụ: √(3x²-5x+1) - √(3x²-3x-3) = √(x²-2) - √(x²-3x+4).
Mình cảm ơn mọi người trước ạ.
Giải pt sau:
|2x-5|+|2x2-7x+5|=0
Giải pt
(x-4)(x+4)+3✓x²-x+3 +5=0
1 ) giải pt căn 10 -x cộng căn x+3 = x bình - 2x +6
2) giải pt căn x+1 cộng căn x+6 trừ căn x-2 = 4
3) cho pt ( x-2) × ( x bình + m x +m -1 ) = 0 . Tìm m để pt có 3 ng pb
4 ) cho pt x × ( x+1) × ( x+2) × ( x+3) = m . Tìm m để pt đã cho có nghiệm
Giải pt :
\(3-x+\sqrt{x^2-3x+2}=0\)
giải pt: \(x^4+2x^3-4x^2-2x+1=0\)
Giải phương trình có chứa ẩn ở mẫu
(x-2)*(2/3x-6)=0
giải pt :
1)x4 + 4x3 + 12x2 +12x + 27= 0
2)x4 - 5x3 + 6x2 + 5x +1 = 0
\(\sqrt{10-x}-\sqrt{x+7}+\sqrt{-x^2+3x+70}=1\)
Giải giúp phương trình vô tỉ bằng cách đặt t = \(\text{}\text{}\sqrt{10-x}+\sqrt{x-7}\)
sao mà thấy khó quá