a) 4(2x+3)-3(2-3x)=7
<=> 8x+12-6+9x=7
<=> 17x=1
<=>x=1/17
Vậy ....
b) (x-4)(x-3)=(x-4)^2
<=>(x-4)(x-3)-(x-4)^2=0
<=> (x-4)(x-3-x+4)=0
<=> x-4=0<=> x=4
a) 4(2x+3)-3(2-3x)=7
<=> 8x+12-6+9x=7
<=> 17x=1
<=>x=1/17
Vậy ....
b) (x-4)(x-3)=(x-4)^2
<=>(x-4)(x-3)-(x-4)^2=0
<=> (x-4)(x-3-x+4)=0
<=> x-4=0<=> x=4
Bài 1: Giải phương trình
\(a,\dfrac{x+1}{2009}+\dfrac{x+3}{2007}=\dfrac{x+5}{2005}+\dfrac{x+7}{1993}\)
\(b,\left(x+2\right)^4+\left(x+4\right)^4=14\)
\(c,\left(x-3\right)\left(x-2\right)x+1=60\)
d, \(2x^4+3x^3-x^2+3x+2=0\)
Giải các phương trình sau:
1. \(a,\dfrac{6}{x-1}-\dfrac{4}{x-3}=\dfrac{8}{2x-6}\)
\(b,\dfrac{1}{x-2}+\dfrac{5}{x+1}=\dfrac{3}{2-x}\)
\(c,\dfrac{3x}{x-2}-\dfrac{x}{x-5}=\dfrac{3x}{\left(x-2\right)\left(5-x\right)}\)
2. \(a,\left(x+2\right)\left(3-4x\right)=x^2+4x+4\)
\(b,2x^2-6x+1\)
Giải các phương trình:
\(a,\left(x+3\right)^2+2\left(x-1\right)^2=\left(3x-7\right)\left(x-2\right)\)
\(b,\left(x-4\right)\left(x-3\right)=\left(x-4\right)^2\)
Giải các phương trình sau :
a,\(\left(4x-3\right)\left(2x-1\right)=\left(x-3\right)\left(4x-3\right)\)
b,\(25x^2-9=\left(5x+3\right)\left(2x+1\right)\)
c,\(\left(3x-4\right)^2-4\left(x+1\right)^2=0\)
Bài 1:cho phương trình
a,\(\left(x-1\right)^3-x\left(x-1\right)^2=5x\left(2-x\right)-11\left(x+2\right)\)
b,\(\dfrac{\left(x+10\right)\left(x+4\right)}{12}-\dfrac{\left(x+4\right)\left(2-x\right)}{4}=\dfrac{\left(x+10\right)\left(x-2\right)}{3}\)
c,\(\dfrac{2\left(x-3\right)}{7}+\dfrac{x-5}{3}=\dfrac{13x+4}{21}\)
d,\(\dfrac{2x-1}{5}-\dfrac{x-2}{3}=\dfrac{x+7}{5}\)
e,\(\left(x-2\right)^3+\left(3x-1\right)\left(3x+1\right)=\left(x+1\right)^3\)
Giải các phương trình sau
a,\(\dfrac{6x+5}{2}-\dfrac{10x+3}{4}=2x+\dfrac{2x+1}{2}\)
b,\(\left(x-4\right)\left(x+4\right)-2\left(3x-2\right)=\left(x-4\right)^2\)
Giải các bất phương trình:
\(a,\left(2x+1\right)^2+\left(1-x\right)3x\le\left(x+2\right)^2\)
\(b,\left(x-4\right)\left(x+4\right)\ge\left(x+3\right)^2+5\)
Giải bất phương trình :
a) \(\frac{x}{3}\left(\frac{16x}{3}-4\right)-\left(\frac{5x}{3}-1\right)^2\ge0\)
b) \(\left(3x^2-2\right)+6\left(2x+1\right)>3x\left(x+4\right)\)
Giải phương trình:
\(a,\left|-5x\right|=3x-16\)
\(b,\left|2x+1\right|=\left|x-1\right|\)
\(c,\left|2x+1\right|-\left|5x-2\right|=3\)