Giải các bất phương trình sau :
a) \(15-2x\left(1-x\right)< 2x^2-4x+5\)
b) \(x^2-\frac{x\left(3x+2\right)}{3}< \frac{x-6}{3}\)
c) \(1+\frac{x+4}{3}< x-\frac{x-3}{2}\)
d) \(\left(\frac{2x+1}{2}\right)^2+\frac{3x\left(1-x\right)}{3}-\frac{5x}{4}\le1\)
bài 1 giải phương trình
\(\frac{3x+2}{3x-2}-\frac{6}{2+3x}=\frac{9x^2}{9x^2-4}\)
\(\frac{3}{5x-1}+\frac{3}{3-5x}=\frac{4}{\left(1-5x\right)\left(5x-3\right)}\)
\(\frac{3}{1-4x}=\frac{2}{4x+1}-\frac{8+6x}{16x^2-1}\)
\(\frac{5-x}{4x^2-8x}+\frac{7}{8x}=\frac{x-1}{2x\left(x-2\right)}+\frac{1}{8x-16}\)
\(\frac{x+1}{x^2+x+1}-\frac{x-1}{x^2-x+1}=\frac{3}{x\left(x^4+x^2+1\right)}\)
giải các phương trình sau :
a. (x-3)(x-4)-2.(3x-2)=\(\left(4-x\right)^2\)
b. \(\left(x+2\right)\left(x-2\right)+5x^2=\left(3x+1\right)-3x^2\)
c. \(\left(x+2\right)^3-\left(x-1\right)^3=\left(3x+1\right).\left(3x-1\right)\)
d.\(\frac{3-x}{2018}+\frac{x-1}{2020}=\frac{-x}{2021}+1\)
Giải các bất phương trình:
\(a,\frac{3x-2}{x+4}\ge0\)
\(b,\frac{\left(2x+3\right)\left(x-1\right)}{x+2}>0\)
Bài 3: Giải các phương trình sau bằng cách đưa về dạng ax+b =0 :
a) \(\frac{3x-11}{11}-\frac{x}{3}=\frac{3x-5}{7}-\frac{5x-3}{9}\)
b) \(\frac{9x-0,7}{4}-\frac{5x-1,5}{7}=\frac{7x-1,1}{6}-\frac{5\left(0,4-2x\right)}{5}\)
c) \(\frac{5\left(x-1\right)+2}{6}-\frac{7x-1}{4}=\frac{2\left(2x-1\right)}{7}-5\)
d) \(14\frac{1}{2}-\frac{2\left(x+3\right)}{5}=\frac{3x}{2}-\frac{2\left(x-7\right)}{3}\)
Giải các phương trình sau
a) \(\frac{1}{x+1}-\frac{5}{x-2}=\frac{15}{\left(x+1\right)\left(2-x\right)}\)
b) \(\frac{1}{2x-3}-\frac{3}{x\left(2x-3\right)}=\frac{5}{x}\)
c) \(\frac{6}{x-1}-\frac{4}{x-3}=\frac{8}{2x-6}\)
d) \(\frac{3}{\left(x-1\right)\left(x-2\right)}+\frac{2}{\left(x-3\right)\left(x-1\right)}=\frac{1}{\left(x-2\right)\left(x-3\right)}\)
e) \(\frac{1}{x-2}+\frac{5}{x+1}=\frac{3}{2-x}\)
f) \(\frac{5x}{2x+2}+1=-\frac{6}{x+1}\)
g) \(\frac{x+1}{x-1}-\frac{x-1}{x+1}=\frac{4}{x^2-1}\)
h) \(\frac{3x}{x-2}-\frac{x}{x-5}=\frac{3x}{\left(x-2\right)\left(5-x\right)}\)
1. a, tính gt nhỏ nhất của biểu thức
A=\(\frac{2x^2-16x+41}{x^2-8x+22}\)
b, tính gt lớn nhất của biểu thúc
B=\(\frac{3x^2+9x+17}{3x^2+9x+7}\)
2. cho bt Q=\(\left[\left(x^4-x+\frac{x-3}{x^3+1}\right).\frac{\left(x^3-2x^2+2x-1\right)\left(x+1\right)}{x^9+x^7-3x^2-3}+1-\frac{2\left(x+6\right)}{x^2+1}\right].\frac{4x^2+4x+1}{\left(x+3\right)\left(4-x\right)}\)
Bài 1: Giải phương trình sau:
a) \(\left|\frac{3x-6}{1-2x}\right|=x-2\)
b) \(\left|-2x+8\right|=\frac{x^2-6x+8}{x+3}\)
c) \(\frac{\left|x\right|-6}{x^2-36}=2\)
d) \(\frac{\left|x^2-4x+3\right|}{5x^2-7x+2}=x-3\)
e) \(\frac{-2x^2+7x-4}{\left|2x+1\right|}=4-x\)
f) \(\frac{\left|x^2+5x+4\right|}{x^2+3x+2}=x+4\)
Bài 1: Giải phương trình:
a, \(\frac{5x-1}{3}+\frac{7x-1,1}{3}-\frac{1,5-5x}{7}=\frac{9x-0,7}{4}\)
Bài 2: Giải các phương trình sau bằng cách đưa về phương trình tích:
a, \(3\left(x-1\right)\left(2x-1\right)=5\left(x+8\right)\left(x-1\right)\)
b, \(9x^2-1=\left(3x+1\right)\left(4x+1\right)\)
c, \(\left(x+7\right)\left(3x-1\right)=49-x^2\)
d, \(x^3-5x^2+6x=0\)
e, \(2x^3+3x^2-32x=48\)