Giải các phương trình :
a) \(f'\left(x\right)=0\) với \(f\left(x\right)=1-\sin\left(\pi+x\right)+2\cos\dfrac{3\pi+x}{2}\)
b) \(g'\left(x\right)=0\) với \(g\left(x\right)=\sin3x-\sqrt{3}\cos3x+3\left(\cos x-\sqrt{3}\sin x\right)\)
Giải phương trình \(f'\left(x\right)=0\) biết rằng :
a) \(f\left(x\right)=3x+\dfrac{60}{x}-\dfrac{64}{x^3}+5\)
b) \(f\left(x\right)=\dfrac{\sin3x}{3}+\cos x-\sqrt{3}\left(\sin x+\dfrac{\cos3x}{3}\right)\)
Bài tập 3: Cho hàm số
f( x )=c o s x. Chứng minh rằng:
2f'(x+pi/3).f'(x-pi/6)=f'(0)-f(2x+pi/6)
Bài tập 4: Cho hàm số y=3(sin^4 x +cos^4 )-2(sin^6 x +cos^6 x). Chứng minh rằng: y'=0 \-/ x€ Z
Bài tập 5: Cho hàm số
Y= (sin x/ 1+cos x)^3. CMR: y'.sinx-3y=0
Giải phương trình \(f'\left(x\right)=0\) biết rằng :
a) \(f\left(x\right)=3\cos x+4\sin x+5x\)
b) \(f\left(x\right)=1-\sin\left(\pi+x\right)+2\cos\left(\dfrac{2\pi+x}{2}\right)\)
1, Cho hàm số y=f(x) và f'(0)=3. Hỏi giới hạn \(\lim\limits_{x\rightarrow0}\dfrac{\sqrt{x+1}-1}{f\left(0\right)-f\left(x\right)}\)=?
2, Cho hàm số f(x) có đạo hàm trên R và f'(x)=0 có các nghiệm là 1 và -2. Đặt \(g\left(x\right)=f\left(\sqrt{x^2+4}\right)\), hỏi g'(x)=0 có bao nhiêu nghiệm?
Mọi người giúp mình với ạ, mình cần gấp!! Cảm ơn mọi người rất nhiều!!!
Chứng minh rằng \(f'\left(x\right)=0;\forall x\in R\) nếu :
a) \(f\left(x\right)=3\left(\sin^4x+\cos^4x\right)-2\left(\sin^6x+\cos^6x\right)\)
b) \(f\left(x\right)=\cos^6x+2\sin^4x.\cos^2x+3\sin^2x\cos^4x+\sin^4x\)
c) \(f\left(x\right)=\cos\left(x-\dfrac{\pi}{3}\right)\cos\left(x+\dfrac{\pi}{4}\right)+\cos\left(x+\dfrac{\pi}{6}\right)\cos\left(x+\dfrac{3\pi}{4}\right)\)
d) \(f\left(x\right)=\cos^2x+\cos^2\left(\dfrac{2\pi}{3}+x\right)+\cos^2\left(\dfrac{2\pi}{3}-x\right)\)
Cho hàm số f(x)=1/2sin2x-cosx-x+2015.Tính f'(x) và tìm x để f'(x)=0
giúp mình với ạ
đạo hàm của lượng giác
Giải phương trình y'=0
\(y=\frac{cos3x}{3}-cosx+\sqrt{2}\)
y= sin2x + cosx
Giải bất phương trình \(f'\left(x\right)>g'\left(x\right)\) biết rằng :
a) \(f\left(x\right)=x^3+x-\sqrt{2};g\left(x\right)=3x^2+x+\sqrt{2}\)
b) \(f\left(x\right)=2x^3-x^2+\sqrt{3};g\left(x\right)=x^3+\dfrac{x^2}{2}-\sqrt{3}\)