Giải các hệ phương trình:
\(a,\left\{{}\begin{matrix}\frac{3x-2y}{5}+\frac{5x-3y}{3}=x+1\\\frac{2x-3y}{3}+\frac{4x-3y}{2}=y+1\end{matrix}\right.\)
\(b,\left\{{}\begin{matrix}\frac{1}{x-3}-\frac{1}{y-1}=0\\3x-2y=7\end{matrix}\right.\)
giải hệ phương trình:
a) \(\left\{{}\begin{matrix}\frac{2y-5x}{3}+5=\frac{y+27}{4}-2x\\\frac{x+1}{3}+y=\frac{6y-5x}{7}\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}x\sqrt{5}-\left(1+\sqrt{3}\right)y=1\\\left(1-\sqrt{3}\right)x+y\sqrt{5}=1\end{matrix}\right.\)
giải hệ phương trình:
1, \(\left\{{}\begin{matrix}2y\left(4y^2+3x^2\right)=x^4\left(x^2+3\right)\\2012^x\left(\sqrt{2y-2x+5}-x+1\right)=4024\end{matrix}\right.\)
2, \(\left\{{}\begin{matrix}x^3-2x^2y-15x=6y\left(2x-5-4y\right)\\\frac{x^2}{8y}+\frac{2x}{3}=\sqrt{\frac{x^3}{3y}+\frac{x^2}{4}}-\frac{y}{2}\end{matrix}\right.\)
3, \(\left\{{}\begin{matrix}8\left(x^2+y^2\right)+4xy+\frac{5}{\left(x+y\right)^2}=13\\2x+\frac{1}{x+y}=1\end{matrix}\right.\)
Giải hệ phương trình :
1, \(\left\{{}\begin{matrix}\frac{2}{x}+\frac{3}{y-2}=4\\\frac{4}{x}+\frac{1}{y-2}=1\end{matrix}\right.\)
2 , \(\left\{{}\begin{matrix}\frac{2}{2x-y}-\frac{1}{x+y}=0\\\frac{3}{2x-y}-\frac{6}{x+y}=-1\end{matrix}\right.\)
3, \(\left\{{}\begin{matrix}5\left(x+2y\right)=3x-1\\2x+4=3\left(x-2y\right)-15\end{matrix}\right.\)
4, \(\left\{{}\begin{matrix}2x+y=7\\-x+4y=10\end{matrix}\right.\)
Giải phương trình sau :
\(\left(1-\frac{1}{5}\right)\left(1-\frac{1}{21}\right)\left(1-\frac{1}{28}\right)\left(1-\frac{1}{36}\right)\left(1-\frac{1}{45}\right)\left(1-\frac{1}{55}\right)\left(5x-10\right)+2=2x+5\)
1. Giải hpt: \(\left\{{}\begin{matrix}x+y+z=0\\2x+3y+z=0\\\left(x+1\right)^2+\left(y+2\right)^2+\left(z+3\right)^2=26\end{matrix}\right.\)
2. Cho x,y,z là nghiệm của hpt : \(\left\{{}\begin{matrix}\frac{x}{3}+\frac{y}{12}-\frac{z}{4}=1\\\frac{x}{10}+\frac{y}{5}+\frac{z}{3}=1\end{matrix}\right.\) . Tính \(A=x+y+z\)
Giải hệ phương trình: \(\left\{{}\begin{matrix}\frac{2y-5x}{3}+5=\frac{y+27}{4}-2x\\\frac{x+1}{3}-\frac{6y-5x}{7}+y=0\end{matrix}\right.\)
Giải phương trình:
\(\frac{\left(x-1\right)^4}{\left(x^2-3\right)^2}+\left(x^2-3\right)^4+\frac{1}{\left(x-1\right)^2}=3x^2-2x-5\)
Giải phương trình : \(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{2x-3}}=\sqrt{3}.\left(\frac{1}{\sqrt{4x-3}}+\frac{1}{\sqrt{5x-6}}\right)\)