Bài 1: Giải phương trình
\(a,\dfrac{x+1}{2009}+\dfrac{x+3}{2007}=\dfrac{x+5}{2005}+\dfrac{x+7}{1993}\)
\(b,\left(x+2\right)^4+\left(x+4\right)^4=14\)
\(c,\left(x-3\right)\left(x-2\right)x+1=60\)
d, \(2x^4+3x^3-x^2+3x+2=0\)
Giải các phương trình sau:
1. \(a,\dfrac{6}{x-1}-\dfrac{4}{x-3}=\dfrac{8}{2x-6}\)
\(b,\dfrac{1}{x-2}+\dfrac{5}{x+1}=\dfrac{3}{2-x}\)
\(c,\dfrac{3x}{x-2}-\dfrac{x}{x-5}=\dfrac{3x}{\left(x-2\right)\left(5-x\right)}\)
2. \(a,\left(x+2\right)\left(3-4x\right)=x^2+4x+4\)
\(b,2x^2-6x+1\)
Giải các phương trình:
a, \(x^3+2x^2+2x+1=0\)
b, \(\left(x-4\right)\left(x-5\right)\left(x-6\right)\left(x-7\right)=1680\)
Giải phương trình:
a) \(\frac{4x-8+\left(4-2x\right)}{x^2+1}=0\)
b) \(\frac{x^2\left(x-3\right)}{x}=0\)
c) \(\frac{\left(x+2\right)\left(2x-1\right)-x-2}{x^2-x+1}=0\)
Giải các phương trình:
\(a,\left(2x+1\right)^3-\left(x-1\right)^3-\left(x+2\right)^3=0\)
\(b,\left(x-3\right)^3+\left(x+11\right)^3-\left(2x+8\right)^3=0\)
Giải các phương trình:
\(a,8x^2-\left(4x+3\right)^3+\left(2x+3\right)^3=0\)
b, \(\left(x-2\right)\left(x+2\right)\left(x^2-10\right)=72\)
Giải các phương trình sau :
a,\(\left(4x-3\right)\left(2x-1\right)=\left(x-3\right)\left(4x-3\right)\)
b,\(25x^2-9=\left(5x+3\right)\left(2x+1\right)\)
c,\(\left(3x-4\right)^2-4\left(x+1\right)^2=0\)
Giải các phương tình sau:
a) \(\left(12x+7\right)^2\left(3x+2\right)\left(2x+1\right)=3\)
b)\(8\left(x+\dfrac{1}{x}\right)^2+4\left(x^2+\dfrac{1}{x^2}\right)^2-4\left(x^2+\dfrac{1}{x^2}\right)\left(x+\dfrac{1}{x}\right)^2=\left(x+4\right)^2\)
c)\(2x\left(8x-1\right)^2\left(4x-1\right)=0\)
d)\(x^2-y^2+2x-4y-10=0\) ( x,y là các số nguyên dương )
Bài 1: Giải phương trình:
a, \(\frac{5x-1}{3}+\frac{7x-1,1}{3}-\frac{1,5-5x}{7}=\frac{9x-0,7}{4}\)
Bài 2: Giải các phương trình sau bằng cách đưa về phương trình tích:
a, \(3\left(x-1\right)\left(2x-1\right)=5\left(x+8\right)\left(x-1\right)\)
b, \(9x^2-1=\left(3x+1\right)\left(4x+1\right)\)
c, \(\left(x+7\right)\left(3x-1\right)=49-x^2\)
d, \(x^3-5x^2+6x=0\)
e, \(2x^3+3x^2-32x=48\)