\(\frac{21}{x^2-4x+10}-x^2+4x-6\ge0\Leftrightarrow\frac{21}{x^2-4x+10}-\left(x^2-4x+10\right)+4\ge0\)
Đặt \(t=x^2-4x+10=\left(x-2\right)^2+6\), ta có điều kiện \(t\ge6\), khi đó \(t>0\)
Phương trình ban đầu tương đương : \(\frac{21}{t}-t+4\ge0\Leftrightarrow t^2-4t-21\le0\)
\(\Leftrightarrow-3\le t\le7\)
Kết hợp với điều kiện \(t\ge6\), ta được \(6\le t\le7\)
Do đó :
\(\frac{21}{x^2-4x+10}-x^2+4x-6\ge0\Leftrightarrow\begin{cases}\left(x-2\right)^2+6\ge6\\\left(x-2\right)^2+6\le7\end{cases}\)
\(\Leftrightarrow\left|x-2\right|\le1\)
\(\Leftrightarrow1\le x\le3\)
Vậy tập nghiệm của bất phương trình đã cho là \(T=\left[1;3\right]\)