\(B=\left|3x+8,4\right|-24,2\)
Ta có \(\left|3x+8,4\right|\ge0\)
\(\Rightarrow\left|3x+8,4\right|-24,2\ge-24,2\)
\(\Rightarrow B\ge-24,2\)
Vậy \(MinB=-24,2\) đạt được \(\Leftrightarrow3x+8,4=0\Leftrightarrow x=-2,8\)
\(B=\left|3x+8,4\right|-24,2\)
Ta có \(\left|3x+8,4\right|\ge0\)
\(\Rightarrow\left|3x+8,4\right|-24,2\ge-24,2\)
\(\Rightarrow B\ge-24,2\)
Vậy \(MinB=-24,2\) đạt được \(\Leftrightarrow3x+8,4=0\Leftrightarrow x=-2,8\)
Tìm giá trị nhỏ nhất của biểu thức:
M = \(\left|3x+8,4\right|-14,2\)
Câu 1: Tính giá trị nhỏ nhất của biểu thức : \(E=\frac{5-3x}{4x-8}\left(x\in Z,x\ne2\right)\)
a) Cho biểu thức A=\(\dfrac{2008-x}{8-x}\) Tìm giá trị nguyên của x để A đạt giá trị lớn nhất . Tìm giá trị đó
b)Tìm giá trị nhỏ nhất của biểu thức : P=I2013-xI+I2014-xI
a) Cho biểu thức A=\(\dfrac{2008-x}{8-x}\) Tìm giá trị nguyên của x để A đạt giá trị lớn nhất . Tìm giá trị đó
b)Tìm giá trị nhỏ nhất của biểu thức : P=I2013-xI+I2014-xI
a) Tìm giá trị nhỏ nhất của biểu thức: S= \(\dfrac{5x^4+4x^2+10}{x^4+2}\)
b) Tìm giá trị lớn nhất của biểu thức: T=\(\dfrac{2x^4-4x^2+8}{x^4+4}\)
c) Cho a là hằng số và a>0. Tìm giá trị nhỏ nhất của biểu thức: M=\(\dfrac{8y^8+2a\left(y-3\right)^2+2a^2}{4y^8+a^2}\)
Tìm giá trị nhỏ nhất của biểu thức: P=\(\dfrac{14-x}{4-x}\)(x∈Z). Khi đó, x nhận giá trị nguyên nào
tìm giá trị nhỏ nhất của biểu thức A= x^4 +3x^2+2
Tìm giá trị nhỏ nhất của biểu thức sau H =|x-3|+|4+x|
tìm giá trị nhỏ nhất của biểu thức: |2x - 9|+|x - 7|+|x - 3|