Biết rằng \(sin\left(x-\frac{\text{Π }}{2}\right)+sin\frac{13\text{Π }}{2}=sin\left(x+\frac{\text{Π }}{2}\right)\)
thì giá trị của cosx là bao nhiêuNếu \(cot1,25.tan\left(4\text{ }Π+1,25\right)-sin\left(x+\frac{Π}{2}\right).cos\left(6Π-x\right)=0\) thì tanx bằng
Rút gọn biểu thức sau:\(A=\left[tan\frac{17\pi}{4}+tan\left(\frac{7\pi}{2}-x\right)\right]^2+\left[cot\frac{17\pi}{4}+cot\left(7\pi\right)-x\right]^2\)
Tính giá trị biểu thức:
\(P=\left[Tan\dfrac{17\Pi}{4}+Tan\left(\dfrac{7\Pi}{2}-x\right)\right]^2+\left[Cot\dfrac{13\Pi}{4}+Cot\left(7\Pi-x\right)\right]^2\)
chứng minh rằng
a)
\(\frac{1-2\text{s}in^2x}{2cot\left(\frac{\pi}{4}+\alpha\right).c\text{os}^2\left(\frac{\pi}{4}-\alpha\right)}=1\)
b)
\(\frac{\frac{\sqrt{3}}{2}c\text{os}2\text{a}-\frac{1}{2}sin2\text{a}}{1-\frac{1}{2}c\text{os}2\text{a}-\frac{\sqrt{3}}{2}sin2\text{a}}=tan\left(a+\frac{\pi}{4}\right)\)
\(\cos\left(5\Pi+x\right)+\sin\left(\frac{9\Pi}{2}-x\right)-\tan\left(\frac{3\Pi}{2}+x\right)\cot\left(\frac{3\Pi}{2}-x\right)\)
đơn giản biểu thức:
a, \(\left(\frac{sin\alpha+tan\alpha}{cos\alpha+1}\right)^2+1\)
b, \(tan\alpha\left(\frac{1+cos^2\alpha}{sin\alpha}-sin\alpha\right)\)
c, \(\frac{cot^2\alpha-cos^2\alpha}{cot^2a}+\frac{sin\alpha.cos\alpha}{cot\alpha}\)
CMR
\(\frac{cot^2\left(\frac{x}{2}\right)-cot^2\left(\frac{3x}{2}\right)}{cos^2\left(\frac{x}{2}\right).cosx.\left(1+cot^2\frac{3x}{2}\right)}=8\)
Chứng minh rằng: (Pls help me)
a, \(\frac{1}{\sin x}+\cot x=\cot\frac{x}{2}\)
b, \(\frac{1-\cos x}{\sin x}=\tan\frac{x}{2}\)
c,\(\tan\frac{x}{2}\left(\frac{1}{\cos x}+1\right)=\tan x\)
d,\(\frac{\sin2a}{2\cos a\left(1+\cos a\right)}=\tan\frac{a}{2}\)
e,\(\cot x+\tan\frac{x}{2}=\frac{1}{\sin x}\)
f,\(3-4\cos2x+\cos4x=8\sin^4x\)
g,\(\frac{1-\cos x}{\sin x}=\frac{\sin x}{1+\cos x}\)
h,\(\sin x+\cos x=\sqrt{2}\sin\left(x+\frac{\pi}{4}\right)\)
i,\(\sin x-\cos x=\sqrt{2}\sin\left(x-\frac{\pi}{4}\right)\)
l,\(\cos x-\sin x=\sqrt{2}\cos\left(x+\frac{\pi}{4}\right)\)