Bạn làm được rồi thì cho mình xin lời giải với nhé.
Bạn làm được rồi thì cho mình xin lời giải với nhé.
Cho tam thức f(x) =ax^2+bx+c
(a khác 0).Chứng minh rằng nếu tồn tại số thực a Sao cho a.f(x) bé hơn hoặc bằng 0 thì phương trình f(x) luôn có nghiệm
help me , pls
Bằng phương pháp chứng minh phản định lí để giải :
Cho tam thức f(x)=a2 +bx +c , a≠0 . Chứng minh rằng nếu tồn tại số thực α sao cho a.f(α) ≤ 0 thì phương trình f(x)=0 luôn có nghiệm
GIÚP MÌNH GIẢI CÁC BÀI TẬP NÀY VỚI Ạ !
Câu 1/ Chứng minh rằng với mọi số tự nhiên n , n3 chia hết cho 3 thì n chia hết cho 3.
Câu 2/Cho tam thức f(x) = ax2 + bx +c =0 .Chứng minh rằng nếu tồn tại số thực α sao cho a.f(α) ≤ 0 thì phương trình f(x)=0 luôn có nghiệm .
Câu 3/ Chứng minh rằng một ta giác có đường trung tuyến vừa là phân giác xuất phát từ một đỉnh là tam giác cân tại đỉnh đó.
1.Tam giác ABC có trung tuyến AI.CMR : AI > BI
2.Cho ab > hoặc =2( c +d).CMR có ít nhất 1 trong 2 ptrinh sau có nghiệm x^2 + ax+ c =0;x^2 + bx + d= 0
Dùng phương pháp phản chứng minh cho 2 phương trình:
\(\left\{{}\begin{matrix}x^2+ax+b=0\\x^2+cx+d=0\end{matrix}\right.\)
biết rằng \(a.c\ge2\left(b+d\right)\)
Cmr: Ít nhất 1 trong 2 phương trình trên có nghiệm
Xét tính đung sai của mỗi mệnh đề sau và phát biểu phủ định của nó :
a) \(\sqrt{3}+\sqrt{2}=\dfrac{1}{\sqrt{3}-\sqrt{2}}\)
b) \(\left(\sqrt{2}-\sqrt{18}\right)^2>8\)
c) \(\left(\sqrt{3}+\sqrt{12}\right)^2\) là một số hữu tỉ
d) \(x=2\) là một nghiệm của phương trình \(\dfrac{x^2-4}{x-2}=0\)
Cho
P: f(x) =ax^2+bx+c pt có 2 nghiệm phan biết x1<alpha<x2
Q: a.f(alpha)<0
Cm P<=>Q
Cho a, b là các số hữu tỉ khác 0 và n ∈ N*. Chứng minh rằng:
A=\(a\sqrt{n}+b\sqrt{n+1}\) là số vô tỉ
Câu nào sau đây không phải mệnh đề ?
a) 3+3=6
b) 1+3=5
c) \(\sqrt{3}\) có phải là một số hữu tỉ hay không ?
d) \(x^2\)>0