Giả sử đường thẳng d có phương trình là ax + by + c = 0
Điều kiện a2 + b2 ≠ 0
d (A; d) = 2 ⇒ \(\dfrac{\left|a+b+c\right|}{\sqrt{a^2+b^2}}=2\)
d (B; d) = 4 ⇒ \(\dfrac{\left|2a+3b+c\right|}{\sqrt{a^2+b^2}}=4\)
Vậy |2a + 3b + c| = |2a + 2b + 2c|
⇔ \(\left[{}\begin{matrix}b=c\left(1\right)\\4a+5b+3c=0\left(2\right)\end{matrix}\right.\)
Từ (1) ⇒ (a + 2b)2 = 4 (a2 + b2)
⇒ \(\left[{}\begin{matrix}a=0\\3a=4b\end{matrix}\right.\)
Với a = 0 , chọn b = 1 => c = 1
=> Pt d : y + 1 = 0
Với 3a = 4b, chọn a = gì tùy => b => c
=> d
(2) => (cái này vô lí)