\(\Leftrightarrow\left\{{}\begin{matrix}\left(x+2\right)^2+\left(y+1\right)^2=8\\\left(x-2y\right)^2+3\left(y+1\right)^2=16\end{matrix}\right.\)
\(\Leftrightarrow\left(x-2y\right)^2+3\left(y+1\right)^2=2\left(x+2\right)^2+2\left(y+1\right)^2\)
\(\Leftrightarrow\left(x-2y\right)^2-\left(x+2\right)^2=\left(x+2\right)^2-\left(y+1\right)^2\)
\(\Leftrightarrow\left(2x-2y+2\right)\left(-2y-2\right)=\left(x-y+1\right)\left(x+y+3\right)\)
\(\Leftrightarrow\left(x-y+1\right)\left(-4y-4\right)=\left(x-y+1\right)\left(x+y+3\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}x-y+1=0\\-4y-4=x+y+3\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}y=x+1\\x=-5y-7\end{matrix}\right.\)
Chia 2 trường hợp và thay vào pt đầu là xong
cho hệ phương trình:x^2+y^2+4xy=6 và 2x^2+8=3y+7x.help