Ta có: \(\frac{1}{x\left(x+1\right)}=\frac{x+1-x}{x\left(x+1\right)}=\frac{1}{x}-\frac{1}{x+1}\)
tương tự, ta được
\(\frac{1}{x\left(x+1\right)}+\frac{1}{\left(x+1\right)\left(x+2\right)}+...+\frac{1}{\left(x+19\right)\left(x+20\right)}\\ =\frac{1}{x}-\frac{1}{x+1}+\frac{1}{x+1}-\frac{1}{x+2}+...+\frac{1}{x+19}-\frac{1}{x+20}\\ =\frac{1}{x}-\frac{1}{x+20}\\ =\frac{x+20-x}{x\left(x+20\right)}=\frac{20}{x\left(x+20\right)}\)
Thay x=1 vào BT ta được :
A=\(\frac{20}{1\left(1+20\right)}=\frac{20}{21}\)
thi tốt nhé