\(P=\frac{x^2-2x+2020}{x^2}\)
\(P=1-\frac{2}{x}+\frac{2020}{x^2}\)
Đặt \(\frac{1}{x}=a\)
\(P=1-2a+2020a^2\)
\(P=2020\left(a^2-\frac{1}{1010}a+\frac{1}{2020}\right)\)
\(P=2020\left(a^2-2\cdot a\cdot\frac{1}{2020}+\frac{1}{2020^2}+\frac{1}{2020}-\frac{1}{2020^2}\right)\)
\(P=2020\left[\left(a-\frac{1}{2020}\right)^2+\frac{2019}{2020^2}\right]\)
\(P=2020\left(a-\frac{1}{2020}\right)^2+\frac{2019}{2020}\ge\frac{2019}{2020}\forall a\)
Dấu "=" xảy ra \(\Leftrightarrow a=\frac{1}{2020}\Leftrightarrow x=2020\)