=\(\frac{\sqrt{5}+2}{\left(\sqrt{5}+2\right)\left(\sqrt{5}-2\right)}\)-\(\frac{\sqrt{5}-2}{\left(\sqrt{5}-2\right)\left(\sqrt{5+2}\right)}\)
=\(\frac{\sqrt{5}+2-\sqrt{5}+2}{\left(\sqrt{5}+2\right)\left(\sqrt{5}-2\right)}\)
= 4
=\(\frac{\sqrt{5}+2}{\left(\sqrt{5}+2\right)\left(\sqrt{5}-2\right)}\)-\(\frac{\sqrt{5}-2}{\left(\sqrt{5}-2\right)\left(\sqrt{5+2}\right)}\)
=\(\frac{\sqrt{5}+2-\sqrt{5}+2}{\left(\sqrt{5}+2\right)\left(\sqrt{5}-2\right)}\)
= 4
Tính
a)\(\frac{\sqrt{15}-\sqrt{5}}{\sqrt{3}-1}-\frac{5-2\sqrt{5}}{2\sqrt{5}-4}\)
b)\(\frac{2\sqrt{8}-\sqrt{12}}{\sqrt{3}-1}-\frac{\sqrt{5}+\sqrt{27}}{\sqrt{30}-\sqrt{2}}\)
c)\(\frac{2}{\sqrt{3}-1}-\frac{2}{\sqrt{3}+1}\)
Tính:
a/ \(\frac{2}{\sqrt{3}-1}+\frac{3}{\sqrt{3}-2}+\frac{12}{3-\sqrt{3}}\)
b/ \(\frac{1}{\sqrt{3}-\sqrt{2}}-\frac{2}{\sqrt{7}+\sqrt{5}}-\frac{3}{\sqrt{5}-\sqrt{2}}+\frac{4}{\sqrt{7}+\sqrt{3}}\)
c/ \(\frac{\sqrt{14}-\sqrt{17}}{1-\sqrt{2}}\)
d/ \(\frac{3\sqrt{2}-3}{\sqrt{2}-1}\)
e/ \(\frac{5\sqrt{a}-\sqrt{ab}}{\sqrt{b}-5}\)
Rút gọn:
a, A = \(\frac{1}{\sqrt{3}+\sqrt{1}}+\frac{1}{\sqrt{5}+\sqrt{3}}+\frac{1}{\sqrt{7}+\sqrt{5}}+\frac{1}{\sqrt{9}+\sqrt{7}}\)
b, B = \(2\sqrt{40\sqrt{12}}-2\sqrt{\sqrt{75}}-3\sqrt{5\sqrt{48}}\)
c, C = \(\frac{15}{\sqrt{6}+1}+\frac{4}{\sqrt{6}-2}-\frac{12}{3-\sqrt{6}}-\sqrt{6}\)
d, D = \(\sqrt{x+2\sqrt{2x-4}}+\sqrt{x-2\sqrt{2x-4}}\) với x ≥ 2
a) Cho \(A=\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+\frac{1}{\sqrt{4}}+...+\frac{1}{\sqrt{25}}\)
Chứng minh : 7 < A < 8
b) Chứng minh : \(5\sqrt{2}< 1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{50}}< 10\sqrt{2}\)
Trục căn thức ở mẫu:
a,\(\frac{1}{\sqrt{2}-1}\)
b,\(\frac{2}{\sqrt{3}+1}\)
c,\(\frac{5}{\sqrt{7}-\sqrt{2}}\)
d,\(\frac{6}{2\sqrt{3}+\sqrt{2}}\)
e,\(\frac{1}{2\sqrt{a}+1}\)
g,\(\frac{2xy}{2\sqrt{x}+3\sqrt{y}}\)
h,\(\frac{x\sqrt{x}-1}{\sqrt{x}-1}\)
i,\(\frac{a-9b}{\sqrt{a}-3\sqrt{b}}\)
k,\(\frac{15-2\sqrt{5}}{3\sqrt{15}-2\sqrt{3}}\)
\(\frac{1}{\sqrt{3}+\sqrt{2}-\sqrt{5}}-\frac{1}{\sqrt{3}+\sqrt{2}-\sqrt{5}}\)
Tính giá trị biểu thức
Giải phương trình :
a) \(\left(\sqrt{x}-2\right)\left(5-\sqrt{x}\right)=4-x\)
b) \(\frac{\sqrt{x+5}}{\sqrt{x+4}}=\frac{\sqrt{x-2}}{\sqrt{x+3}}\)
c) \(\frac{1}{x+\sqrt{x^2+1}}+\frac{1}{x-\sqrt{x^2+1}}=4\)
Rút gọn các biểu thức sau : ( giá trị các biểu thức chứa chữ đều có nghĩa )
a, \(5\sqrt{\frac{1}{5}}\) . \(\frac{1}{2}\sqrt{20}\) + \(\sqrt{5}\)
b, \(\sqrt{\frac{1}{2}}\) + \(\sqrt{4,5}\)
c, \(\sqrt{20}\) + \(\sqrt{45}\) - \(3\sqrt{75}\) + \(\sqrt{72}\)
d, \(5\sqrt{a}\) - \(4\sqrt{25a^2}\) + \(\sqrt{9a}\) - \(2\sqrt{16a}\)
e, \(\frac{2+\sqrt{3}}{\sqrt{2}+\sqrt{2+\sqrt{3}}}\) + \(\frac{2-\sqrt{3}}{\sqrt{2}-\sqrt{2-\sqrt{3}}}\)
g, \(\frac{3+\sqrt{5}}{\sqrt{2}+\sqrt{3+\sqrt{5}}}\) + \(\frac{3-\sqrt{5}}{\sqrt{2}-\sqrt{3-\sqrt{5}}}\)
Trục căn ở mẫu:
a, \(\frac{9}{\sqrt{3}}\)
b, \(\frac{3}{\sqrt{5}-\sqrt{2}}\)
c, \(\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}\)
d, \(\frac{1}{\sqrt{18}+\sqrt{8}-2\sqrt{2}}\)