\(\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{28}\)
=> \(\frac{16}{64}+\frac{8}{64}+\frac{4}{64}+\frac{2}{64}+\frac{1}{64}+\frac{1}{28}\)
=> \(\frac{31}{64}+\frac{1}{28}=>\frac{217}{448}+\frac{16}{448}=\frac{233}{448}\)
\(\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{28}\)
=> \(\frac{16}{64}+\frac{8}{64}+\frac{4}{64}+\frac{2}{64}+\frac{1}{64}+\frac{1}{28}\)
=> \(\frac{31}{64}+\frac{1}{28}=>\frac{217}{448}+\frac{16}{448}=\frac{233}{448}\)
Chứng Minh Rằng
a) \(\frac{1}{2}-\frac{1}{4}+\frac{1}{8}-\frac{1}{16}+\frac{1}{32}-\frac{1}{64}< \frac{1}{3}\)
b) \(\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+.....+\frac{99}{3^{99}}-\frac{100}{3^{100}}< \frac{3}{16}\)
Chứng minh rằng: a)\(\frac{1}{2}-\frac{1}{4}+\frac{1}{8}-\frac{1}{16}+\frac{1}{32}-\frac{1}{64}< \frac{1}{3}\)
b)\(\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+...+\frac{99}{3^{99}}-\frac{100}{3^{100}}< \frac{3}{16}\)
Nhanh lên nhé! Mk đang cần gấp.
\(\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{24}+\frac{1}{48}+\frac{1}{28}\)
\(\left(20+9\frac{1}{4}\right):2\frac{1}{4}\) \(\left(6-2\frac{4}{5}\right).3\frac{1}{8}-1\frac{3}{5}:\frac{1}{4}\)
\(\frac{32}{15}:\left(-1\frac{1}{5}+1\frac{1}{3}\right)\) \(0,2.\frac{15}{36}-\left(\frac{2}{5}=\frac{2}{3}\right):1\frac{1}{5}\)
\(\frac{-3}{7}.\frac{5}{9}+\frac{4}{9}.\frac{-3}{7}+2\frac{3}{7}\) \(0,7.2\frac{2}{3}.20.0,375.\frac{5}{8}\)
Tính
S= \(\frac{3}{2}+\frac{5}{4}+\frac{9}{8}+\frac{17}{16}+\frac{33}{32}+\frac{65}{64}-7\)
\(a,1\frac{13}{15}.0,75-\left(\frac{8}{15}+0,25\right).\frac{24}{47}\)
\(b,5:\left(4\frac{3}{4}-1\frac{25}{28}\right)-1\frac{3}{8}:\left(\frac{3}{8}+\frac{9}{20}\right)\)
\(c,6\frac{5}{12}:2\frac{3}{4}+11\frac{1}{4}.\left(\frac{1}{3}-\frac{1}{5}\right)\)
\(d,\left(\frac{3}{5}+0,415-\frac{3}{200}\right).2\frac{2}{3}.0,25\)
\(e,\left(\frac{3}{8}+\frac{-3}{4}+\frac{7}{12}\right):\frac{5}{6}+\frac{1}{2}\)
\(g,1\frac{13}{15}.0,75-\left(\frac{11}{20}+25\%\right);\frac{7}{3}\)
Tính hợp lí:
a, 75. ( \(-2\frac{3}{25}+7\frac{2}{75}-5\frac{4}{15}\) )
b, \(45.\left(5\frac{4}{15}-4\frac{7}{9}-1\frac{8}{45}\right)\)
c, \(\frac{-5}{8}+\frac{14}{18}-\frac{3}{8}+\frac{2}{9}-\frac{1}{2006}\)
d, \(\frac{15}{29}-\frac{8}{7}+\frac{16}{14}+\frac{14}{29}-\frac{3}{8}\)
e, \(\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{49.51}\)
Bài 1:So sánh Avà B biết rằng:
A=\(\frac{10^{15}+1}{10^{16}+1};\) B=\(\frac{10^{16}+1}{10^{17}+1}\)
A=\(\frac{3}{8^3}+\frac{7}{8^4}\); B=\(\frac{7}{8^3}+\frac{3}{8^4}\)
A=\(\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+.......+\frac{1}{19}+\frac{1}{20};\) B=\(\frac{1}{2}\)
Bài 2:Dạng tính tổng đặc biệt:
\(A=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+.....+\frac{1}{99\cdot100}\)
\(B=\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+.....+\frac{2}{99\cdot101}\)
\(C=\frac{3^2}{10}+\frac{3^2}{40}+\frac{3^2}{88}+......+\frac{3^2}{340}\)
\(D=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+......+\frac{1}{3^8}\)
\(E=\left(1-\frac{1}{2}\right)\cdot\left(1-\frac{1}{3}\right)\cdot\left(1-\frac{1}{4}\right).......\left(1-\frac{1}{99}\right)\)
Bài 3:Dạng chứng minh:
\(A=1+\frac{1}{2}+\frac{1}{3}+......+\frac{1}{99}.\)Chứng minh rằng A chia hết cho 100
A=\(\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+...+\frac{1}{70}\).Chứng minh rằng A>\(\frac{4}{3}\)
\(\frac{10+\frac{9}{2}+\frac{8}{3}+\frac{7}{4}+ \frac{6}{5}+\frac{5}{6}+\frac{4}{7}+\frac{3}{8}+\frac{2}{9}+\frac{1}{10}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{10}+\frac{1}{11}}\)