\(a,\Delta OAB.cân.tại.O\left(OA=OB=R\right)\) nên OH là trung tuyến cũng là đường cao \(\Rightarrow OH\perp AB\left(1\right)\)
\(\Delta OCD.cân.tại.O\left(OC=OD=R\right)\) nên Ok là trung tuyến cũng là đường cao \(\Rightarrow OK\perp CD\left(2\right)\)
Ta có \(AB//CD\left(gt\right)\left(3\right)\)
Từ \(\left(1\right)\left(2\right)\left(3\right)\Rightarrow OH.trùng.OK\Rightarrow O;H;K\) thẳng hàng
\(b,AH=\dfrac{1}{2}AB=8\left(cm\right);OA=R=10\left(cm\right)\\ \Rightarrow OH=\sqrt{OA^2-AH^2}=6\left(cm\right)\left(pytago\right)\\ \Rightarrow OK=HK-OH=14-6=8\left(cm\right)\\ Mà.OC=R=10\left(cm\right)\\ \Rightarrow CK=\sqrt{OC^2-OK^2}=6\left(cm\right)\\ Mà.CK=\dfrac{1}{2}CD\\ \Rightarrow CD=12\left(cm\right)\)