Bài 4: Cho hình bình hành ABCD, hai đường chéo AC, BD cắt nhau tại O. Kẻ BH I AC tại H cắt DC tại N và kẻ DK 1 AC tại K cắt AB tại M. a) Chứng minh tứ giác BMDN là hình bình hành. b) Chứng minh tứ giác BKDH là hình bình hành. c) Chứng minh AC, BD, MN đồng quy.
Cho hình bình hành ABCD, gọi E, F lần lượt là trung điểm của AB và CD.
a) Chứng minh AECF là hình bình hành
b) AF và CE cắt BD lần lượt tại M và N, chứng minh
Cho hình bình hành ABCD Gọi E là trung điểm của AB F là trung điểm của CD Chứng minh rằng a de = BF B Chứng minh rằng AB CD và e f đồng quy tại một điểm c b d cắt AF và Be lần lượt ở M và N Chứng minh rằng BM = MN = mn
Cho hình bình hành ABCD. Gọi M, N lần lượt là trung điểm của BC, CD. AM, AN lần lượt cắt BD tại E, F. Chứng minh BE = EF = FD
Cho hình bình hành ABCD có đường chéo BD tại M , cắt CD tại E . Từ C kẻ đường thẳng vuông góc BD tại N , cắt AB tại F. Chứng minh rằng : a) tam giác AMD = tam giác CNB b) tứ giác AMCN là hình bình hành c) tứ giác AECF là hình bình hành ( CÓ HÌNH VẼ) GIÚP EM VỚI Ạ EM ĐANG CẦN GẤP
Cho hình bình hành ABCD có hai đường chéo AC và BD cắt nhau tại O. Gọi M, N, P, Q lần lượt là trung điểm các đoạn OA, OB, OC, OD
1) Chứng minh rằng tứ giác MNPQ là hình bình hành
2) Chứng minh rằng các tứ giác ANCQ, BPDM là các hình bình hành
Bài 6 :Cho hình bình hành ABCD, gọi E,F lần lượt là trung điểm của AB và CD
a) Tứ giác DEBF là hình gì?
b)C/m: AC,BD,EF đồng quy
c) Gọi giao điểm của AC với DE và BF thứ tự là M,N, chứng minh tứ giác EMFN là hình bình hành
d) Tính SEMFN khi AC = a, BC = b, AC ⊥ BD
Cho hình bình hành ABCD, gọi O là giao điểm của hai đường chéo AC và BD. Gọi M, N lần lượt là trung điểm của OB và OD.
a) Chứng minh tứ giác AMCN là hình bình hành bằng hai cách.
b) Tia AM cắt BC ở E, tia CN cắt AD ở F. Chứng minh ba đường thẳng AC, BD, EF đồng quy.
Giúp mình bài này với
Cho hình bình hành ABCD, AC cắt BD tại O, 2 đường cao AM và DQ của tam
giác AOD cắt nhau tại E, 2 đường cao BN và CP của tam giác BOC cắt nhau tại F
a) Chứng minh AMCP, MNPQ là hình bình hành.
b) Chứng minh O là trung điểm của EF.
Xin cảm ơn ạ