Gọi O là giao điểm của AC và BD
⇒ O là trung điểm của AC và BD
Xét ΔABC có AM và BO là trung tuyến
⇒ E là trọng tâm
=> BE=2OE
Tương tự ta có: DF=2OF
mà OD=OB (do O là trung điểm của BD)
=> BE=EF=DF
Gọi O là giao điểm của AC và BD
⇒ O là trung điểm của AC và BD
Xét ΔABC có AM và BO là trung tuyến
⇒ E là trọng tâm
=> BE=2OE
Tương tự ta có: DF=2OF
mà OD=OB (do O là trung điểm của BD)
=> BE=EF=DF
Cho hình bình hành ABCD. Gọi M, N lần lượt là trung điểm của BC, CD. AM, AN lần lượt cắt BD tại E, F. Chứng minh rằng:
a)E,F lần lượt là trọng tâm của các tam giác ABC và ACD
b)EB=EF=DF
Cho hình bình hành ABCD, BD = 3 AD. Gọi M, N lần lượt là trung điểm của AB, CD. Trên BD lấy E và F sao cho BE = EF = FD. a) Chứng minh MENF là hình chữ nhật. b) Hình bình hành ABCD phải có thêm điều kiện gì để MENF là hình vuông?
Cho hình bình hành ABCD, gọi E, F lần lượt là trung điểm của AB và CD.
a) Chứng minh AECF là hình bình hành
b) AF và CE cắt BD lần lượt tại M và N, chứng minh
Cho hình bình hành ABCD Gọi E là trung điểm của AB F là trung điểm của CD Chứng minh rằng a de = BF B Chứng minh rằng AB CD và e f đồng quy tại một điểm c b d cắt AF và Be lần lượt ở M và N Chứng minh rằng BM = MN = mn
Bài 2: Cho hình bình hành ABCD. Gọi I và K lần lượt là trung điểm của AB, CD. Đường chéo BD cắt AK, CI lần lượt tại M, N. Chứng minh rằng:
a) AK//CI
b) DM = MN = NB
Cho hình bình hành ABCD có E và F lần lượt là trung điểm của AB và DC. Gọi M,N lần lượt là giao điểm của AC với DE và BF.
a) CM: Tứ giác DEBF là hình bình hành
b) CM: AM=MN=NC
c) MN cắt EF tại O. CM: B đối xứng với D qua O.
Cho hình bình hành ABCD có M, N lần lượt là trung điểm của AB và CD.
a) Chứng minh AMCN là hình bình hành.
b) AN, MC cắt BD lần lượt tại H và I. Chứng minh: DH = HI = IB.
c) Chứng minh MN đi qua trung điểm của AC.
Bài 6 :Cho hình bình hành ABCD, gọi E,F lần lượt là trung điểm của AB và CD
a) Tứ giác DEBF là hình gì?
b)C/m: AC,BD,EF đồng quy
c) Gọi giao điểm của AC với DE và BF thứ tự là M,N, chứng minh tứ giác EMFN là hình bình hành
d) Tính SEMFN khi AC = a, BC = b, AC ⊥ BD
cho hình bình hành abcd ac và bd cắt nhau tại o gọi ef lần lượt là trung điểm của ob và od
a) CM AECF là hbh
b) gọi N là giao điểm của CE và AB ,M là giao điểm của AF và CD . CM ,AN=CM và ba điểm M,O,N thẳng hàng
giúp mik vs