Ôn tập Quan hệ giữa các yếu tố trong tam giác, các đường đồng quy của tam giác

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Sách Giáo Khoa

Dựng các hình vuông ABDE và ACFG bên ngoài tam giác nhọn ABC cho trước.

a) Gọi H là điểm thuộc đường thẳng BC sao cho \(AH\perp BC\). Gọi I, J là các điểm thuộc đường thẳng AH sao cho \(EI\perp AH\) và \(GJ\perp AH\). Chứng minh :

                    \(\Delta ABH=\Delta EAI,\Delta ACH=\Delta GAJ\)

Từ đó suy ra đường thẳng AH cắt EG tại trung điểm K của EG (tức là AK là trung tuyến của tam giác AEG)

b) Gọi L là điểm thuộc đường thẳng AK sao cho K là trung điểm của AL. Chứng minh AL = BC

c) Chứng minh \(\Delta ABL=\Delta BDC\). Từ đó suy ra CD là một đường cao của tam giác BCL

d) Chứng minh rằng các đường thẳng AH, BF, CD đồng quy ?

Lynk Lee
12 tháng 12 2017 lúc 9:38

Bài này vẽ hình hơi dài dòng mà em ko bt vẽ hình ở

Thôi thì lời giải của em ở trang 98->99

Hình bs.36


Các câu hỏi tương tự
phạm thanh trà
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Nguyễn Thị Khánh Linh
Xem chi tiết
ッLEGEND♛✔
Xem chi tiết
Bạch Khánh Linh
Xem chi tiết
Linh Đặng
Xem chi tiết
Hà Oanh
Xem chi tiết
Lê Anh Thư
Xem chi tiết
Linh Ánh
Xem chi tiết