\(\dfrac{x\sqrt{x}}{\sqrt{x}+2}-2\sqrt{x}\left(dk:x\ge0\right)\\ =\dfrac{x\sqrt{x}-2\sqrt{x}\left(\sqrt{x}+2\right)}{\sqrt{x}+2}\\ =\dfrac{x\sqrt{x}-2x-4\sqrt{x}}{\sqrt{x}+2}\)
\(\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\)
\(tan=3\\ cot=\dfrac{1}{3}\)
Ta có : \(1+tan^2=\dfrac{1}{cos^2}\Rightarrow1+3^2=\dfrac{1}{cos^2}\Rightarrow cos=\dfrac{\sqrt{10}}{10}\)
\(sin=\sqrt{1-cos^2}=\sqrt{1-\left(\dfrac{\sqrt{10}}{10}\right)^2}=\dfrac{3\sqrt{10}}{10}\)
\(B=\dfrac{sin+cos}{sin^3+cos^3}=\dfrac{sin+cos}{\left(sin+cos\right)\left(sin^2+cos^2-sincos\right)}=\dfrac{1}{1-sincos}\)
\(=\dfrac{1}{1-\dfrac{3\sqrt{10}}{10}.\dfrac{\sqrt{10}}{10}}=\dfrac{10}{7}\)
Vậy \(B=\dfrac{10}{7}\)