Ta có:
\(\dfrac{x}{5}=\dfrac{y}{4}=\dfrac{z}{2}\)
\(\Rightarrow\dfrac{x^3}{125}=\dfrac{y^3}{64}=\dfrac{z^3}{8}\)
\(=\dfrac{x^3-y^3-z^3}{125-64-8}\left(1\right)\) ( Áp dụng tính chất dãy tỉ số bằng nhau )
Vì \(x^3-y^3=z^3\)
\(\Rightarrow x^3-y^3-z^3=0\left(2\right)\)
Thay (2) vào (1) ta được
\(\dfrac{x^3-y^3-z^3}{125-64-8}=\dfrac{0}{53}=0\)
Với \(\dfrac{x^3}{125}=0\)
\(\Rightarrow x^3=0\)
\(\Rightarrow x=0\)
Với \(\dfrac{y^3}{64}=0\)
\(\Rightarrow y^3=0\)
\(\Rightarrow y=0\)
Với \(\dfrac{z^3}{8}=0\)
\(\Rightarrow z^3=0\)
\(\Rightarrow z=0\)
Vậy x = y = z = 0
Ta có: \(x^3-y^3=z^3\Rightarrow x^3-y^3-z^3=0\)
\(\dfrac{x}{5}=\dfrac{y}{4}=\dfrac{z}{2}\Rightarrow\dfrac{x^3}{125}=\dfrac{y^3}{64}=\dfrac{z^3}{8}\)
Áp dụng t/c dãy TSBN ta được:
\(\dfrac{x^3}{125}=\dfrac{y^3}{64}=\dfrac{z^3}{8}=\dfrac{x^3-y^3-z^3}{125-64-8}=\dfrac{0}{125-64-8}=0\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{5}=0\\\dfrac{y}{4}=0\\\dfrac{z}{2}=0\end{matrix}\right.\Rightarrow x=y=z=0\)