\(\dfrac{\sqrt{x}-2}{\sqrt{x}-3}\)-\(\dfrac{3}{4}\)=\(\dfrac{\left(\sqrt{x}-2\right)\cdot4-3\cdot\left(\sqrt{x}-3\right)}{4\cdot\left(\sqrt{x}-3\right)}\)=\(\dfrac{4\sqrt{x}-8-3\sqrt{x}+9}{4\sqrt{x}-12}\)=\(\dfrac{\sqrt{x}+1}{4\sqrt{x}-12}\)
\(\dfrac{\sqrt{x}-2}{\sqrt{x}-3}\)-\(\dfrac{3}{4}\)=\(\dfrac{\left(\sqrt{x}-2\right)\cdot4-3\cdot\left(\sqrt{x}-3\right)}{4\cdot\left(\sqrt{x}-3\right)}\)=\(\dfrac{4\sqrt{x}-8-3\sqrt{x}+9}{4\sqrt{x}-12}\)=\(\dfrac{\sqrt{x}+1}{4\sqrt{x}-12}\)
\(A=\dfrac{\sqrt{x}+2}{\sqrt{x}-2}-\dfrac{3}{\sqrt{x}+2}+\dfrac{12}{x-4}\)
\(B=\dfrac{\sqrt{x}}{\sqrt{x}-3}-\dfrac{\sqrt{x}-21}{9-x}\dfrac{1}{\sqrt{x}+3}\)
\(C=\dfrac{\sqrt{x}}{\sqrt{x}+3}+\dfrac{2\sqrt{x}}{\sqrt{x}-3}-\dfrac{3x+9}{x-9}\)
\(D=\dfrac{1}{\sqrt{x}+3}-\dfrac{\sqrt{x}}{3-\sqrt{x}}+\dfrac{2\sqrt{x}+12}{x-9}\)
\(N=\dfrac{\sqrt{x}}{\sqrt{x}-1}+\dfrac{2\sqrt{x}-1}{\sqrt{x}+1}-\dfrac{6}{x-1}\)
\(M=\dfrac{3}{\sqrt{x}-3}+\dfrac{2}{\sqrt{x}+3}+\dfrac{x-5\sqrt{x}-3}{x-9}\)
Thu gọn biểu thức
A=\(\sqrt{\dfrac{3\sqrt{3}}{2\sqrt{3}+1}}-\sqrt{\dfrac{\sqrt{3}+4}{5-2\sqrt{3}}}\)
B=\(\dfrac{x\sqrt{x}-2x+28}{x-3\sqrt{x}-4}-\dfrac{\sqrt{x}-4}{\sqrt{x}+1}+\dfrac{\sqrt{x}+8}{4-\sqrt{x}}\left(x\ge0,x\ne16\right)\)
\(\dfrac{5}{4-\sqrt{11}}+\dfrac{1}{3+\sqrt{7}}-\dfrac{6}{\sqrt{7}-2}-\dfrac{\sqrt{7}-5}{2}=4+\sqrt{11}-3\sqrt{7}\)
\(\dfrac{\sqrt{x}+\sqrt{y}}{2\left(\sqrt{x}-\sqrt{y}\right)}-\dfrac{\sqrt{x}-\sqrt{y}}{2\left(\sqrt{x}+\sqrt{y}\right)}-\dfrac{y+x}{y-x}=\dfrac{\sqrt{x}+\sqrt{y}}{\sqrt{x}-\sqrt{y}}\)
Cho biểu thức D = \(\left(\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{\sqrt{x}}{\sqrt{x}-3}-\dfrac{3x+3}{x-9}\right):\left(\dfrac{2\sqrt{x}-2}{\sqrt{x}-3}-1\right)\)
với \(x\ne9,x\ge0\)
a) Rút gọn D
b)Tìm x để \(D< \dfrac{-1}{4}\)
1.cho biểu thức A=\(\dfrac{\sqrt{x}+2}{\sqrt{x}+3}-\dfrac{5}{x+\sqrt{x}-6}-\dfrac{1}{\sqrt{x}-2}\)với(x≥0;x≠4)
a)rút gọn A
b)tính A khi x=6+4\(\sqrt{2}\)
2.cho biểu thức P=\(\left(\dfrac{4\sqrt{x}}{\sqrt{x}+2}-\dfrac{8x}{x-4}\right):\left(\dfrac{\sqrt{x}+2}{\sqrt{x}-2}+3\right)\)với x≥0;x≠1;x≠4
a)rút gọn P
b)tìm x để P=-4
1) \(\dfrac{\sqrt{5}-\sqrt{3}}{\sqrt{2}}\)
2)\(\dfrac{\sqrt{x}+1}{\sqrt{x}-2}+\dfrac{2\sqrt{x}}{\sqrt{x}+2}+\dfrac{2+5\sqrt{x}}{4-x}\)
Rút gọn
A=\(\dfrac{3}{2+\sqrt{3}}+\dfrac{13}{4-\sqrt{3}}+\dfrac{6}{\sqrt{3}}\)
B=\(\dfrac{x\sqrt{y}-y\sqrt{x}}{\sqrt{xy}}-\dfrac{x-y}{\sqrt{x}—\sqrt{y}}\)với\(x\ne y\)x>0;y>0
C=\(\dfrac{\sqrt{4-2\sqrt{3}}}{\sqrt{6}-\sqrt{2}}\)
D=\((3\sqrt{2}+\sqrt{6})\sqrt{6-3\sqrt{3}}\)
CHO BIỂU THỨC A=(\(\dfrac{2+\sqrt{X}}{2-\sqrt{X}}\) - \(\dfrac{2-\sqrt{X}}{2+\sqrt{X}}\) - \(\dfrac{4X}{X-4}\) \()\) : ( \(\dfrac{2}{2-\sqrt{X}}\) - \(\dfrac{\sqrt{X}+3}{2\sqrt{X}-X}\)) a, Tìm x để A luôn xác định b, Rút gọn A c,Tìm x để A < 1
a, Tính: \(A=\dfrac{2}{2+\sqrt{5}}-\sqrt{9-2\sqrt{20}}+\sqrt[3]{5\sqrt{5}}\)
b, Cho biểu thức: \(B=\left(\dfrac{2}{2\sqrt{x}-1}+\dfrac{3}{\sqrt{x}+2}-\dfrac{2\sqrt{x}}{2x+3\sqrt{x}-2}\right).\dfrac{2\sqrt{x}-\sqrt{x}}{6\sqrt{x}+4}\) với \(\left\{{}\begin{matrix}x\ge0\\x\ne\dfrac{1}{4}\end{matrix}\right.\)
\(\left(\dfrac{x-2\sqrt{x}}{x-4}-1\right):\left(\dfrac{4-x}{x-\sqrt{x}-6}-\dfrac{\sqrt{x}-2}{3-\sqrt{x}}-\dfrac{\sqrt{x}-3}{\sqrt{x}+2}\right)\)
voi x\(\ge0,x\ne4;9\)