\(\dfrac{\left(4\times7+2\right)\left(6\times6+2\right)\left(8\times11+2\right)...\left(100\times103+2\right)}{\left(5\times8+2\right)\left(7\times10+2\right)\left(9\times12+2\right)...\left(99\times102+2\right)}\)
Mấy bạn giúp mình được không :((
\(\frac{\left(4\cdot7+2\right)\left(6\cdot6+2\right)\left(8\cdot11+2\right)...\left(100\cdot103+2\right)}{\left(5\cdot8+20\right)\left(7\cdot10+2\right)\left(9\cdot12+2\right)...\left(99\cdot102+2\right)}\)=?
trình bày cách giải hộ em
Tính nhanh giá trị của biểu thức:
\(A=\dfrac{\left(2^4+2^2+1\right)\left(4^4+4^2+1\right)\left(6^4+6^2+1\right)\left(8^4+8^2+1\right)\left(10^4+10^2+1\right)}{\left(3^4+3^2+1\right)\left(5^4+5^2+1\right)\left(7^4+7^2+1\right)\left(9^4+9^2+1\right)\left(11^4+11^2+1\right)}\)
1) \(\left(\dfrac{-3}{4}\right)^{3x+1}=\dfrac{81}{256}\) 6) \(\left(8x-1\right)^{2n-4}=5^{2n-4}\)
2) \(172.x^2-\dfrac{7^9}{98^3}=\dfrac{1}{2^3}\) 7) \(\left(\dfrac{1}{2x}-5\right)^{20}+\left(y^2-\dfrac{1}{4}\right)^{10}=0\)
3) \(\left(x-\dfrac{2}{9}\right)^3=\left(\dfrac{2}{3}\right)^6\)
4) \(\left(x+2\right)^2+\left(y-\dfrac{1}{10}\right)^2=0\)
5) \(\left(x-7\right)^{n+1}-\left(x-7\right)^{n+11}=0\)
Giúp mk với!!!!!
Bài 1:cho phương trình
a,\(\left(x-1\right)^3-x\left(x-1\right)^2=5x\left(2-x\right)-11\left(x+2\right)\)
b,\(\dfrac{\left(x+10\right)\left(x+4\right)}{12}-\dfrac{\left(x+4\right)\left(2-x\right)}{4}=\dfrac{\left(x+10\right)\left(x-2\right)}{3}\)
c,\(\dfrac{2\left(x-3\right)}{7}+\dfrac{x-5}{3}=\dfrac{13x+4}{21}\)
d,\(\dfrac{2x-1}{5}-\dfrac{x-2}{3}=\dfrac{x+7}{5}\)
e,\(\left(x-2\right)^3+\left(3x-1\right)\left(3x+1\right)=\left(x+1\right)^3\)
Giá trị của \(\left(1-\dfrac{1}{2^2}\right)\left(1-\dfrac{1}{3^2}\right)...\left(1-\dfrac{1}{99^2}\right)\left(1-\dfrac{1}{100^2}\right)\)
\(\dfrac{\left(2x-3\right)\left(2x+3\right)}{8}=\dfrac{\left(x-4\right)^2}{6}+\dfrac{\left(x-2\right)^2}{3}\)
Cho bài toán sau: \(\left(1-\dfrac{2}{5}\right).\left(1-\dfrac{2}{7}\right).\left(1-\dfrac{2}{9}\right).\left(1-\dfrac{2}{11}\right).....\left(1-\dfrac{2}{113}\right)=\dfrac{a}{b}\)khi đó a+b = ?
\(8\left(x+\dfrac{1}{x}\right)^2+4\left(x^2+\dfrac{1}{x^2}\right)-4\left(x^2+\dfrac{1}{x^2}\right)\left(x+\dfrac{1}{x}\right)^2=\left(x+4\right)^2\)