Cmr : \(\dfrac{1}{3}\) - \(\dfrac{2}{3^2}\) +\(\dfrac{3}{3^3}\) - \(\dfrac{4}{3^4}\) + ...+\(\dfrac{99}{3^{99}}\) - \(\dfrac{100}{3^{100}}\)< \(\dfrac{3}{16}\)
CMR \(\dfrac{1}{3}-\dfrac{2}{3^2}+\dfrac{3}{3^3}-\dfrac{4}{3^4}+...+\dfrac{99}{3^{99}}-\dfrac{100}{3^{100}}< \dfrac{3}{16}\)
Giúp mk với
Câu 1:
Cho A = \(\dfrac{1}{\dfrac{99}{\dfrac{1}{2}+}}+\dfrac{2}{\dfrac{98}{\dfrac{1}{3}+}}+\dfrac{3}{\dfrac{97}{\dfrac{1}{4}+....}}+...+\dfrac{99}{\dfrac{1}{\dfrac{1}{100}}}\).
B =\(\dfrac{92}{\dfrac{1}{45}+}-\dfrac{1}{\dfrac{9}{\dfrac{1}{50}+}}-\dfrac{2}{\dfrac{10}{\dfrac{1}{55}+}}-\dfrac{3}{\dfrac{11}{\dfrac{1}{60}+....}}-...\dfrac{92}{\dfrac{100}{\dfrac{1}{500}}}\). Tính \(\dfrac{A}{B}\)
Chứng minh rằng:
\(\dfrac{1}{3}-\dfrac{2}{3^2}+\dfrac{3}{3^3}+\dfrac{4}{3^4}+...+\dfrac{99}{3^{99}}-\dfrac{100}{3^{100}}< \dfrac{3}{16}\)
Chứng minh rằng:
\(\dfrac{1}{3}-\dfrac{2}{3^2}+\dfrac{3}{3^3}-\dfrac{4}{3^4}+...+\dfrac{99}{3^{99}}-\dfrac{100}{3^{100}}\)
CM\(\dfrac{1}{5}< \dfrac{1}{4^2}+\dfrac{1}{5^2}+...+\dfrac{1}{100^2}< \dfrac{1}{3}\)
Cho M = \(\dfrac{1}{2}\cdot\dfrac{3}{4}\cdot\dfrac{5}{6}\cdot...\cdot\dfrac{99}{100}\) ; N = \(\dfrac{2}{3}\cdot\dfrac{4}{5}\cdot\dfrac{6}{7}\cdot...\cdot\dfrac{100}{101}\).
Tính M \(\cdot\) N.
CM
\(\dfrac{1}{5}< \dfrac{1}{4^2}+\dfrac{1}{5^2}+...+\dfrac{1}{100^2}< \dfrac{1}{3}\)
a) \(\dfrac{\left(3+\dfrac{1}{6}\right)-\dfrac{2}{5}}{\left(5-\dfrac{1}{6}\right)+\dfrac{7}{10}}\)
b) \(\dfrac{\left(4,08-\dfrac{2}{25}\right):\dfrac{4}{17}}{\left(6\dfrac{5}{9}-3\dfrac{1}{4}\right).2\dfrac{2}{7}}\)
c) \(\dfrac{2-\dfrac{1}{4}+\dfrac{1}{3}-\dfrac{3}{5}}{3-\dfrac{1}{5}-\dfrac{5}{3}}\)